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Abstract 

Light weight mortar of various densities are developed using Expanded polystyrene (EPS) to 

partially substitute sand. Lightweight mortars are used herein to develop three types of 

lightweight hollow blocks: 1-plain, 2- steel wire mesh reinforced (ferrocement) and 3- GFRP 

mesh reinforced (fibro-cement) as well as lightweight solid bricks. The objective of this 

research is to obtain lightweight masonry units of sufficient mechanical, long-term and 

thermal characteristics for low-rise building applications in arid environments. 

Different tests were conducted to assess the mechanical strength; durability and thermal 

conductivity. Five mixtures were prepared; four EPS mortar mixes with average density 

range 1748, 1498, 1258, 988 kg/m3, depending on the EPS content and a control mortar mix 

with average density 2118.4 kg/m3. The mechanical test program included the measurement 

of the compressive strength of cubes, cylinders, hollow blocks and solid bricks, in addition to 

the measurement of the static modulus of elasticity, the stress-strain curve, and splitting 

tensile strength of cylindrical specimens. The durability test program was conducted wholly 

on hollow blocks and involved 48-hour water absorption test as well as subjecting them to 

wet-dry cycles of saturated salt solution and of 5% concentration sulfuric acid solution. The 

thermal conductivity test was conducted with the hot wire method on solid bricks. A finite 

element numerical model was developed on the GAMBIT-FLUENT package to assess the 

equivalent thermal conductivity of the plain hollow blocks. The effect of the three mode of 

heat transfer, namely, conduction, convection and radiation was reported and the interaction 

between them was analyzed.  

The results showed that the addition of EPS aggregates to mortar reduced the 

density as well as the mechanical properties. For a density range between 2200 and 

980 kg/m3, the compressive strength of the cubes ranged between 32.6 and 3.5 MPa, 

and the net compressive strength of the hollow blocks ranged between 9.5 and 2.4 

MPa.  For the same density range the modulus of elasticity and the split tensile 

ranged between 15.5 and 1.2 GPa, and 2.87 and 0.55 MPa respectively. The 

presence of EPS in the cement matrix tremendously improved the failure pattern of 

all the EPS mixes. On the other hand, the durability cycles proved that EPS hollow 

blocks were resilient to acid and salt exposure. The weight loss and compressive 
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strength loss of the hollow blocks due to ettringite leach decreased significantly 

with the addition of EPS aggregates. The salt wet-dry cycles adversely affected the 

compressive strength plain, ferrocement and GFRP mesh reinforced hollow blocks. 

The plain hollow blocks suffered from efflorescence and salt crystallization that 

adversely affected the compressive strength. Moreover, the compressive strength of 

the GFRP mesh reinforced hollow blocks was the most affected and the ferrocement 

EPS hollow blocks were less affected. Furthermore, the thermal conductivity tests 

showed that the inclusion of EPS aggregates decreased the thermal conductivity of 

mortar remarkably. The average thermal conductivity of the control bricks was 1.8 

W/m. K. and ranged between 1.53 and 0.16 W/m. K. for the EPS mortar bricks. 

However, the thermal conductivity obtained numerically for the hollow blocks 

considering all heat transfer modes was 1.43 W/m. K. for the control blocks and 

ranged between 1.27 and 0.25 W/m. K. for the densest and lightest EPS mortar 

hollow blocks respectively. The equivalent thermal conductivity determined from 

the thermal model suggested that lighter EPS hollow blocks of density range 1258 

and 988 kg/m3 would be more thermally efficient if they were solid. This is because, 

thermal conductivity of the hollow blocks inflated when the radiation heat transfer 

mode was accounted for.  

Finally, the results show that EPS mortar hollow blocks and bricks are suitable for non-load 

bearing application of exterior walls within the limits presented by ASTM C 129 and the 

Egyptian Standards (EOS 2005/42 2005), maintain their integrity while resisting salts and 

acids and have superior thermal insulation.  

 

 

 



www.manaraa.com

vi 

 

Table of Contents 

List of Figures ..................................................................................................................... xii 

List of Tables ...................................................................................................................... xv 

Nomenclature .................................................................................................................... xvii 

Greek Symbols ................................................................................................................. xviii 

Chapter 1: Introduction ......................................................................................................... 1 

1.1 Introduction ................................................................................................................ 1 

1.2 Work Objectives and Scope ........................................................................................ 4 

Chapter 2: Literature Review................................................................................................. 7 

2.1 Introduction ..................................................................................................................... 7 

2.2 EPS Cement Composites ............................................................................................ 7 

2.2.1 Mechanical characteristics ................................................................................... 7 

2.2.2 Improved failure characteristics of EPS cement composites ............................... 15 

2.2.3 Fiber reinforced EPS cement composite .................................................................. 19 

2.3 Thermal Properties ................................................................................................... 23 

2.3.1 Experimental investigation of thermal conductivity of EPS cement composites ...... 23 

2.3.2 EPS concrete blocks and bricks strength and thermal insulation ......................... 25 

2.3.3 Numerical evaluation of the equivalent thermal conductivity of hollow blocks .. 28 

2.4 Ferrocement ............................................................................................................. 30 

2.4.1 Ferrocement confinement of concrete and EPS-Core under compression ........... 31 

2.4.2 Ferrocement-confined aerated concrete blocks ................................................... 34 

2.5 Durability of Concrete .............................................................................................. 35 

2.5.1 Sulphuric Acid Attack ....................................................................................... 35 



www.manaraa.com

vii 

 

2.5.2 Sodium Chloride Salt Attack ............................................................................. 38 

Chapter 3: Experimental Program ....................................................................................... 45 

3.1 Introduction .............................................................................................................. 45 

3.2 Mix Design ............................................................................................................... 45 

3.4 Material Properties ................................................................................................... 49 

3.4.1 Cement .............................................................................................................. 49 

3.4.2 Fine Aggregate (Sand) ....................................................................................... 50 

3.4.3 Silica Fume ....................................................................................................... 52 

3.4.4 Expanded Polystyrene ....................................................................................... 53 

3.4.5 High Range Water Reducing Admixture (HRWR) ............................................. 55 

3.4.6  Block Reinforcement ........................................................................................ 55 

a) Wire Mesh Reinforcement ................................................................................. 55 

b) Fiber Mesh Reinforcement ...................................................................................... 56 

3.5 Specimen Preparation ............................................................................................... 56 

3.5.1 Casting and Curing Conditions of the EPS Mortar (EM) Specimens .................. 56 

3.5.2 Casting and Curing Conditions of EPS Mortar Hollow Blocks (EPS MU) ......... 57 

3.5.2.1 Wire Reinforced Blocks ............................................................................. 58 

3.5.2.2 Fiber reinforced bricks................................................................................ 58 

3.5.2.3 Plain Blocks ............................................................................................... 59 

3.6 Test Program ............................................................................................................ 59 

3.6.1 Mechanical Tests ............................................................................................... 60 

3.6.1.1 Compressive Strength ................................................................................. 60 

3.6.1.2 Stress-Strain Relationship and Static Modulus of Elasticity ........................ 63 

3.6.1.3 Splitting Tensile Strength ........................................................................... 64 



www.manaraa.com

viii 

 

3.6.2 Durability Assessment ....................................................................................... 65 

3.6.2.1 Absorption ................................................................................................. 65 

3.6.2.2 Acid/Sulphate Attack.................................................................................. 66 

3.6.2.3 Sea Water (Soluble Chloride) Attack .......................................................... 67 

3.6.3 Thermal Conductivity Assessment ..................................................................... 69 

3.6.3.1 Test Apparatus ........................................................................................... 69 

3.6.3.2 Test Specimens........................................................................................... 69 

3.6.3.3 Specimen Preparation ................................................................................. 70 

3.6.3.4 Experimental procedures ............................................................................ 71 

Chapter 4: Results and Discussion ....................................................................................... 73 

4.1 General ..................................................................................................................... 73 

4.2 Mechanical and Physical Properties of EPS Mortar .................................................. 73 

4.2.1 Density of Hardened EPS Mortar ....................................................................... 73 

4.2.2 Compressive Strength of EPS Mortar ................................................................ 75 

4.2.2.1 Development of the EPS mortar Compressive Strength with Time.............. 75 

4.2.2.2 28-day Compressive Strength of the Cubes and Cylinders .......................... 77 

4.2.2.3 Failure pattern of Cubes and Cylinder .............................................................. 79 

4.2.3 Static Modulus of Elasticity .................................................................................... 80 

4.2.3.1 Stress-strain Curves ......................................................................................... 83 

4.2.4 Splitting Tensile Strength .................................................................................. 85 

4.2.4.1 Failure pattern .................................................................................................. 87 

4.3 Expanded Polystyrene Mortar (EPS) Hollow Blocks ..................................................... 89 

4.3.1 Compressive strength of EPS Hollow Blocks .......................................................... 89 

4.3.2 Effect of EPS Content on Density ........................................................................... 91 



www.manaraa.com

ix 

 

4.3.3 Effect of EPS Content on Compressive Strength ..................................................... 93 

4.3.4 Shape effect on Compressive Strength .................................................................... 94 

4.3.5 Reinforcement effect .............................................................................................. 98 

4.3.6 Failure Pattern of the Hollow Block Specimens .................................................... 100 

4.3.7 Failure Pattern of the Solid Brick Specimens ........................................................ 102 

4.4 Durability Test Results ........................................................................................... 103 

4.4.1 Absorption test results and discussion .............................................................. 104 

4.4.2 Acid/Sulphate test results and discussion ......................................................... 108 

4.4.2.1 Visual Observation ................................................................................... 108 

4.4.2.2 Weight Loss and Decrease in Compressive Strength ................................. 109 

4.4.2.3 Failure Pattern ............................................................................................... 114 

4.4.3 Soluble Chloride test results and discussion .......................................................... 117 

4.4.3.1 Precipitation of salt and water retention and different absorption of salt water 117 

4.4.3.2 Visual observations ........................................................................................ 119 

4.4.3.2 Plain hollow blocks strength deterioration ...................................................... 121 

4.4.3.3 Deterioration of ferrocement Control and EM Hollow Blocks ........................ 122 

4.4.3.4 Deterioration of Glass Fiber Mesh Reinforced Control and EM Hollow Blocks
 .................................................................................................................................. 124 

4.4.3.5 Failure Pattern of Plain control and EM hollow blocks ................................... 125 

4.4.3.6 Failure Pattern Ferrocement control and EM hollow blocks ........................... 125 

4.4.3.7 Failure Pattern GFRP control and EM hollow blocks ..................................... 126 

4.5 Thermal Test Results and Analysis .............................................................................. 127 

4.5.1 The EPS content effect on the k-value .................................................................. 127 

4.5.2 Temperature and moisture effect on the k-value of the control mix ....................... 129 



www.manaraa.com

x 

 

4.5.3 Temperature and moisture effect on the k-value of EPS mortars ........................... 129 

Chapter 5: Numerical Model for Determining Thermal Characteristics ............................. 131 

5.1 Introduction ................................................................................................................. 131 

5.2 Mathematical formulation ........................................................................................... 131 

5.2.1 Post-processing equations ..................................................................................... 133 

5.3 Boundary conditions.................................................................................................... 133 

5.3.1 Operating conditions ............................................................................................. 134 

5.4 Simulation ................................................................................................................... 135 

5.4.1 Grid dependence simulation .................................................................................. 136 

5.4.2 Code Validation .................................................................................................... 138 

5.5 Results and discussions ............................................................................................... 139 

5.5.1 The conduction mode ........................................................................................... 141 

5.5.2 The effect of convection ....................................................................................... 142 

5.5.3 The effect of radiation .......................................................................................... 148 

Chapter 6: Summary and Conclusion ................................................................................ 151 

6.1 Summary ..................................................................................................................... 151 

6.2 Conclusions ................................................................................................................. 151 

6.3 Recommendations for future work ............................................................................... 154 

6.4 Recommendations for applications .............................................................................. 155 

References ........................................................................................................................ 156 

 

 

 



www.manaraa.com

xi 

 

List of Figures  

Figure 2.1: The size effect law basic plot is used to assess whether the nominal strength of the 
material is influenced by the size of the tested specimens (Bazant, et al. 1994) ………………….18 

Figure 2.2: The regeneration of the size effect plot using the nominal strength obtained from the four 
control beams and their counterparts made with lightest EPS mortar (Haidar and Pijaudier-Cabot 
2002)…………………………………………………………………………………………………..19 

Figure 3.1: Sieve analysis results of the fine aggregate ……………………………………………52 

Figure 3.2 a: EPS particles of different shapes and color ……………………………………………54 

Figure 3.2 b: EPS as they occupy 1000 cc cylinder in proportion of gradation ………………….54 

Figure 3.3: gradation of the “Addipore” samples …………………………………………………….54 

Figure 3.4: the shape and distribution of the HRWR induced air bubbles in the mortar matrix appear 
on the surface of (a) grinded cube cross section and (b) on the block’s surface……………………...55 

Figure 3.5: A shiny dark gray mix indicated good homogeneity and workability……………………57 

Figure 3.6: HRWR enhanced workability up to a 200 mm slump …………………………………...57 

Figure 3.7: The wire reinforcement arrangement inside the block before casting……………………58 

Figure 3.8:  The blocks after casing the EPS mortar and before removing the PVC pipes…………...58 

Figure 3.9:  The blocks after removing the PVC pipes and leveling the surface ………………….58 

Figure 3.10:  A schematic of the fiberglass hoop used to reinforce the blocks……………………….59 

Figure 3.11: Universal testing machine testing cube under compression …………………………..61 

Figure 3.12: Test setup for the EPS mortar hollow blocks ……………………………………………62 

Figure 3.13: EPS Block before capping ……………………………………………………………..62 

Figure 3.14: EPS Block after capping…………………………………………………………………62 

Figure 3.15: Test setup for the determination of the stress-strain relationship………………………..63 

Figure 3.16: The test cylinder fitted with the compressometer………………………………………..64 

Figure 3.17: Test setup for the Splitting tensile strength tests………………………………………...65 

Figure 3.18: UNITHERM TM Model 3141 thermal conductivity tester …………………………..69 

Figure 3.19: A schematic diagram of the tested specimens the thermocouples………………………70 

Figure 3.20: Procedures adopted for specimen preparation prior to test commencement …………71 



www.manaraa.com

xii 

 

Figure 4.1: Relationship between EPS content in kg and EPS mortar density in kg/m3……………...75 

Figure 4.2: The development of compressive strength of the test cubes …………………………..76 

Figure 4.3: Relationship between mix density and 28-day compressive strength of EPS 
mortar................................................................................................................................................78 

Figure 4.4: Failure pattern of the EPS Cylinders …………………………………………………….79 

Figure 4.5: Development of the ductile failure with the increase of EPS content ………………….80 

Figure 4.6: relationship between modulus of elasticity and EPS mortar density ………………….82 

Figure 4.7: Relationship between the Static Modulus of elasticity and the 28-day compressive strength 
of EPS mortar………………………………………………………………………………………….83 

Figure 4.8: Stress-strain curves of the control and EPS cylindrical specimens……………………….84 

Figure 4.9: Relationship between the splitting tensile strength and the density of the control and EPS 
mortar mixes…………………………………………………………………………………………..86 

Figure 4.10: Relationship between the splitting tensile and cylinder compressive strengths of the 
control and EPS mortar mixes………………………………………………………………………...87 

Figure 4.11: Splitting failure patterns of the control and EPS mortar cylinders ………………….88 

Figure 4.12: the density of the control and different batches of EPS mortar hollow block 
units………………………………………………………………………………………....................92 

Figure 4.13: the density of the control and different batches of EPS mortar solid bricks …………92 

Figure 4.14: The net compressive strength of the control and different EPS hollow block 
units..................................................................................................................................................93 

Figure 4.15: The compressive strength of the control and different EPS solid bricks………………..94 

Figure 4.16: Effect of Specimen type and shape on the compressive strength of different 
specimens……………………………………………………………………………………………...95 

Figure 4.17: Percentage of the hollow block strength of the cube and cylinder strength……………..95 

Figure 4.18: Percentage of the solid brick strength of the cube and cylinder strength………………..96 

Figure 4.19: Failure pattern of the plain, wire mesh reinforced, and glass fiber reinforced control 
hollow blocks………………………………………………………………………………………...100 

Figure 4.20: Failure pattern of the plain, wire mesh reinforced EM10 hollow blocks………………101 

Figure 4.21: Failure pattern of the plain, wire mesh reinforced, and glass fiber reinforced EM15 
hollow blocks………………………………………………………………………………………...101 



www.manaraa.com

xiii 

 

Figure 4.22: Failure pattern of the plain, wire mesh reinforced EM20 hollow blocks………………102 

Figure 4.23: Failure pattern of the solid EPS bricks…………………………………………………103 

Figure 4.24: Average water absorption for the different types of EM hollow blocks……………….105 

Figure 4.25: Average cumulative weight loss for the different types of EM hollow blocks………...111 

Figure 4.26: Average cumulative weight loss vs. density of EPS hollow blocks……………………111 

Figure 4.27: Average compressive strength loss for the different types of EPS hollow 
blocks…………………………………………………………………………………………...……113 

Figure 4.28: Percent compressive strength loss vs. density of different types of EM hollow 
blocks………………………………………………………………………………………………...114 

Figure 4.29: Failure pattern of plain control and EPS mortar after wet-dry acid cycles ………..115 

Figure 4.30: Failure pattern of ferrocement control and EPS mortar after wet-dry acid 
cycles…………………………………………………………………………………………………116 

Figure 4.31: Failure pattern of fiber reinforced control and EPS mortar after wet-dry acid 
cycles………………………………………………………………………………………………....116 

Figure 4.32: Cumulative salt precipitation in hollow blocks per cycles …………………………119 

Figure 4.33: Cumulative salt water absorption of hollow blocks per cycles………………………...119 

Figure 4.34: Hollow blocks suffered from efflorescence due to salt crystallization………………...120 

Figure 4.35: Average strength loss of all block batches after four wet-dry cycles of saturated NaCl 
ponding……………………………………………………………………………………………….121 

Figure 4.36: Deterioration of ferrocement hollow blocks due to wet-dry saline cycles……………..123 

Figure 4.37: Failure pattern developed in plain hollow blocks after wet-dry saline cycles ………..125 

Figure 4.38: Failure pattern developed in ferrocement hollow blocks after wet-dry saline 
cycles…........................................................................................................................................126 

Figure 4.39: Failure pattern developed in GFRP hollow blocks after wet-dry saline cycles ………..127 

Figure 4.40: The K-value measured at 50 and 70 degrees Celsius of all mixes ………………...128 

Figure 4.41: Pores resulting from the softening and shrinking of surface EPS aggregates of prisms 
made from mix EM20………………………………………………………………………………..130 

Figure 5.1: A 3-D representation of half a block was used to model the heat transfer problem of the 
EPS hollow blocks…………………………………………………………………………………...134 

Figure 5.2: The basic geometry for the generation of structured mesh……………………………...136 



www.manaraa.com

xiv 

 

Figure 5.3: Figure 5.3: 3-D module of the hollow block. The green histogram on the left indicate a 
good quality mesh……………………………………………………………………………………137 

Figure 5.4: The plot shows the mesh sensitivity towards the number of meshed elements…………138 

Figure 5.5: A schematic of the 3-D model representing a module of the commercially available 
concrete hollow blocks……………………………………………………………………………….139 

Figure 5.6:  Keq of different hollow blocks obtained from the numerical simulation 
scenarios……………………………………………………………………………………...............141 

Figure 5.7: the contribution of each heat transfer modes’ Keq in total equivalent thermal conductivity 
(Ktot)…………………………………………………………………………………………………142 

Figure 5.8: Convective and radiative heat transfer rates decrease with the decrease in the solids K-
value………………………………………………………………………………………………….143 

Figure 5.9: Temperature gradient at z=0.5, x=0.5, 0<y<1, through the control and EM20 hollow 
blocks………………………………………………………………………………………………...144 

Figure 5.10: Velocity vectors magnitude obtained from the control hollow blocks in the direction of 
temperature gradient…………………………………………………………………………………145 

Figure 5.11: Vorticity obtained from the control hollow blocks in the direction of temperature 
gradient……………………………………………………………………………………………….145 

Figure 5.12: Vorticity obtained from the control hollow blocks in the z- direction…………………146 

Figure 5.13: Velocity vectors magnitude obtained from the EM20 hollow blocks in the direction of 
temperature gradient are less than those exhibited by the control ones……………………………...146 

Figure 5.14: Vorticity obtained from the EM20 hollow blocks in the direction of temperature gradient 
is less than those developed by the control ones……………………………………………………..147 

Figure 5.15: Vorticity obtained from the EM20 hollow blocks in the z-direction is less than those 
developed by the control ones………………………………………………………………………..147 

Figure 5.16: Temperature gradient along the height of the hollow blocks induced by buoyant forced 
circulating air………………………………………………………………………………………...148 

Figure 5.17: the effect of radiation mode on equilibrating the cavity wall temperature. ………..149 



www.manaraa.com

xv 

 

List of Tables 

Table 2.1: Summary of the accelerated corrosion test program (Mansur, et al. 2008)………………..41 

Table 3.1: Mix proportions of the control mix and the expanded polystyrene mortar mixes …………46 

Table 3.2: Designations for the three types of Blocks………………………………………………...46 

Table 3.3: Summary of the conducted mechanical and thermal tests, specimen type and sample 
size…………………………………………………………………………………………………….48 

Table 3.4: Summary of the conducted durability tests, specimen type and sample size……………...49 

Table 3.5 Chemical composition of ordinary Portland cement as obtained from manufacturer 
(Torah)………………………………………………………………………………………………50 

Table 3.6: Typical results of cement testing as obtained from manufacturer (Torah)………………...51 

Table 3.7: the gradation of the fine aggregates………………………………………………………..51 

Table 3.8: The characteristics of fine aggregates……………………………………………………...52 

Table 3.9 Chemical composition of silica fume as obtained from the manufacturer (the Egyptian 
Ferroalloys Company “EFACO”)……………………………………………………………………..53 

Table 3.10: Average “Addipore 55” gradation as taken from a sample of three bags………………...54 

Table 3.11: Specifications of Galvanized wire mesh as obtained from Gaafar, 2004………………...56 

Table 3.12: Specifications of Fiber glass mesh as obtained from the Manufacturer (GEOX)………..56 

Table 4.1: EPS content and corresponding density and density reduction for each mix……………...73 

Table 4.2: The development of compressive strength of the test cubes………………………………75 

Table 4.3: The compressive strength of EPS and control mortars cubes and cylinders………………77 

Table 4.4: The modulus of elasticity and splitting tensile of EPS and control mortars cubes and 
cylinders……………………………………………………………………………………………….81 

Table 4.5: the density, weight and strength of EPS hollow blocks……………………………………89 

Table 4.6: the density, weight and strength of EPS solid bricks………………………………………90 

Table 4.7: Absorption percent of the different types and densities of EPS hollow blocks…………..104 

Table 4.8: Test results of cyclic ponding of test specimens in 5% sulphuric acid solution………….110 

Table 4.9: Cumulative rate of saline solution absorption and salt precipitation of the different types of 
control and EM blocks……………………………………………………………………………….118 



www.manaraa.com

xvi 

 

Table 4.10: Strength loss incurred to the control and EM hollow blocks after wet-dry cycles of 
saturated NaCl ponding………………………………………………………………………………122 

Table 4.11: The k-value of the control and four EPS mortar mixes measured at 50 and 70 degrees 
Celsius ……………………………………………………………………………………………….128 

Table 5.1: Cases tested for mesh sensitivity estimation……………………………………………...137 

Table 5.2: Results of Keq obtained from the three different run-scenarios compared with the 
experimental K-value of the solid bricks ……………………………………………………………140 

 

 



www.manaraa.com

xvii 

 

Nomenclature 

Fc:  Compressive strength in (MPa) 

E:  Static modulus of elasticity (GPa) 

Fst:  Split tensile strength in (MPa) 

EPSc :  EPS aggregate content (kg) 

e:  Surface emissivity constant at 0.94 

g:  Gravitational acceleration constant 9.81 m/s2 

H:  Height of the cavity in the gravitational direction (m) 

Ks:  Thermal conductivity of solids (W/m K) 

Kcond:  Thermal conductivity due to pure conduction phase (W/m K) 

Kconv:  Thermal conductivity due to pure convection phase (W/m K) 

Krad:  Thermal conductivity due to pure radiation phase (W/m K) 

Ktot: Thermal conductivity due to the interaction of the three heat transfer phases 
(W/m K) 

Kcond-conv: Thermal conductivity due to the interaction between the conduction and 
convection phases (W/m K) 

Nux:  Dimensionless Nusselt’s number in the 2-D boundary conditions 

Nu :  Mean dimensionless Nusselt’s number in the 3-D boundary conditions 

P:  Pressure of air inside the cavity (Pa) 

Pr:  Dimensionless Pandtl’s number constant at 0.7 

Q:  Heat flux (W/m2) 

q:  Heat transfer rate (W) 

qr,k:  Net radiative heat flux at surface k 

Ra:  Rayleigh number 

T:  Temperature in (K) 

Tc , Th:  Cold and hot temperature respectively in (K) 
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u:  Velocity component in the x-direction (m/s) 

v:  Velocity component in the y-direction (m/s) 

w:  Velocity component in the z-direction (m/s) 

x, y, z:  Coordinates (m) 

 

Greek Symbols 

α:  Thermal diffusivity (m2/s) 

β:  Coefficient of volume expansion of air constant at 0.003356 (K-1) 

ρ:  Density (kg/m3) 

ρc:  Reference density of air—at an iteration incident (kg/m3) 

σ:  Stephan-Boltzmann constant (W/m2K4) 

ν:  Kinematic viscosity of air (m2/s) 
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Chapter 1 

Introduction 

1.1 Introduction 

Masonry units are used as load bearing or non load bearing building envelopes and interior 

partition walls. There are several materials, shapes and sizes of masonry units worldwide. 

The American Concrete Institute’s 530.1 Report (ACI 530.1R) defined four prevalent types 

of masonry units: 1) concrete masonry units (CMU), 2) clay or shale masonry units, 3) stone 

masonry units and 4) hollow glass masonry units. Similar types of masonry units are 

prevailing in the Egyptian market. This research focuses on CMU types and its applications. 

CMU are made from cement and fine and coarse aggregates. There are two types of CMU as 

depicted by ACI 530.1 R, Type I entails concrete masonry units that are moisture controlled 

and Type II entails concrete masonry units that are not moisture controlled and is divided into 

three types according to the weight of the units: lightweight, medium, and normal CMU. Two 

types of CMU are available in the market namely; solid concrete brick and hollow concrete 

blocks. The standard specifications of the two types are stated by ASTM C 55, ASTM C 129 

and ASTM C 90. The standard mechanical testing methods and absorption limits for CMU 

are provided by ASTM C 140, 1552 and 1314. The Egyptian Standards state the CMU 

dimensions, density and strength used in Egypt. The density is categorized into light, medium 

and dense CMU. Also the CMU are divided by the Egyptian code into load-bearing and non-

load bearing according to the compressive strength (EOS 2005/42 2005).  

In the past, CMU was used to be cast in moulds like normal concrete which necessitated good 

workability of the mix and possessed limited production rate. However, with the advances in 

technology and increasing demand, vibro-compaction mechanization that involved 

instantaneous de-moulding and stocking became the conventional method in CMU 

production (Gunduz, 2008; Dawood and Ramli, 2010; www.cement.org). There are several 

attractions to the use of CMU in construction. The main attraction of concrete masonry units 

lies in the convenience of the availability of its materials and the method of production. The 

availability of the components of CMU means that it does not require special orders, 

minimizes delays and out of stock instances (www.cement.org). Masonry construction is 
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predominantly a labor intensive job; it requires only experienced masons and trowels 

(Mosalam, 2009, USACERL, 1997, www.cement.org). The construction of masonry walls do 

not require sophisticated methods of construction and design and most of the adopted 

methods for existing structures were based on empirical data extracted from years of practice 

and testing (Mosalam et al, 2009; ACI 530.1R). Additionally, the presence of holes in hollow 

block concrete units renders them as very versatile construction elements. The holes allow for 

using thermal insulation inserts and acoustic isolation fibres (Van Green, 1986). Also, hollow 

block concrete units have better thermal performance than solid concrete bricks (Albikary, 

2003; www.cement.org) as the thermal conductivity of solid concrete is much higher than 

that of air. To overcome this drawback in using solid concrete brick units, introducing air 

gaps is recommended to reduce its thermal conductivity drastically (Al-Jabri, 2005). 

Although CMU have many advantages, challenges called for the improvement of CMU 

manufacturing materials. The average range of the weight of concrete hollow block is 

between 18 and 22 kg, which cripples both masons physically and affects their production 

rate and continuation in this industry (USACERL, 1997). Also, the efficient thermal 

performance of concrete hollow blocks is highly affected by thermal bridges due to the 

presence of ribs and joints (Al-Jabri et al, 2005). These challenges gave way to the 

production of lightweight aggregate (LWA) and more thermal efficient materials in 

production of concrete hollow blocks and solid bricks units. The most commercially available 

LWA concrete hollow blocks, yet still researched worldwide, is made with light weight 

expanded clay aggregates (LECA) which is also mentioned in the Egyptian code though it is 

unavailable now in the Egyptian markets (www.cement.org; www.cellularconcreteinc.com; 

Albikary, 2003; Khatib, 2006; Gunduz, 2006).  

The utilization of lightweight aggregates (LWA) in CMU is a research topic till today in 

terms of mix design, mechanical properties, and thermal characteristics. Some researchers 

reported that the addition of LWA proportion equivalent to 1/3 of the volume of concrete 

decreased the strength of the mortar by ½ (Chandra and Berntsson, 2002). This is why the 

mix design of LWA CMU always involves the addition of mineral admixtures such as fly ash 

and silica fume (Chandra and Berntsson, 2002; Khatib, 2006; Gunduz, 2008). The thermal 

conductivity of LWA CMU was also an investigation topic by some researchers. However, 

most of the studies involved assessing the thermal performance of sampled materials from the 
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LWA CMU rather than estimating the thermal conductivity or the U-value of the whole 

hollow block or assembly of blocks respectively. With the availability of modern simulation 

techniques using finite element modeling, the thermal conductivity and thermal transmittance 

of LWA concrete hollow blocks and assemblies could be accurately estimated.  

With today’s environmental awareness, the urge to recycle more wastes and reduce the 

carbon foot print of the construction industry became a call everywhere in the world. Wastes 

are available worldwide, unlike manufactured and natural LWA that require certain 

technologies and geography respectively. Wastes are available almost for free, as it usually 

gains some value after being introduced as usable material, and recycling wastes in a 

recycling scheme such as mixing it with cement or replacing the natural aggregates will save 

the environment and result in a more economic construction. It is worth noting that most of 

the processed LWA such as expanded slag, fly ash and LECA are made from recycled 

wastes. However, virgin wastes do not always possess the qualities for producing LWA 

concretes. These facts have channeled most of the new research in LWA to investigate the 

use of wastes such as expanded polystyrene waste (EPS), rubber tires, glass and wood 

chippings (Khatib, 2006). As the compressive strength of recycled aggregates concrete 

decreased rapidly with the type and percentage of the utilized waste material, the use of some 

of the produced LWA mixtures may be limited to specific construction applications. 

Expanded Polystyrene (EPS) are light closed cell microstructures made of discrete air voids 

dispersed in a polymer matrix (Kan and Demirboga, 2009; Chen and Liu, 2004). The density 

of EPS ranges between 10 and 50 kg/m3(Kan and Demirboga, 2009; Chen and Liu, 2004). 

Recycling the unmodified EPS wastes (crushed EPS wastes) as lightweight aggregates in 

concrete is considered the cheapest and most environmentally rewarding methods as 

compared to the other recycling methods proposed by Kan and Demirboga, 2009. Expanded 

Polystyrene (EPS) concrete is one of the lightweight aggregate concretes that has proven its 

high thermal insulation and acoustic insulation properties (Perry et al, 1991). There are 

different attractions of EPS concrete, among which, the easiness of its production, availability 

and cost effectiveness (Godwin, 1982; Gaggino, 2006). The easiness of EPS concrete mixing 

and the aggregate’s availability and economy made it a more attractive material to be used in 

housing applications. EPS concrete’s superior thermal and acoustic insulation as well as its 

lightweight made it attractive for non-structural building applications such as: 1-thermally 
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insulating wall and roof panels (Perry et al, 1991), 2-core materials for sandwich panels 

(Perry et al, 1991) and lightweight thermally insulating blocks (Godwin, 1982; Perry et al, 

1991; Al-Jabri et al, 2005; Gaggino, 2006).  

Hollow blocks and solid bricks made of EPS mortar are applications of the use of recycled 

LWA in manufacturing masonry units.  EPS masonry units (EPS MU) could be utilized for 

construction of above ground exterior walls as well as interior walls. Due to the constituents 

of the mortar matrix, EPS MU are expected to possess superior thermal characteristics. For 

structures that require high strength and ductility, the EPS hollow block load bearing walls 

would have reinforcement and suitably grouted to increase their compressive strength and 

toughness (USACERL, 1997). As grouting would jeopardize the thermal insulation of the 

blocks, lightweight grout could be used to prevent the formation of thermal bridging. EPS 

MU are expected to be cost efficient. The materials required to produce EPS MU are off the 

shelf and cheap. Cost reductions would also be projected on the construction industry as light 

weight EPS MU would reduce the dead load on the foundations and other structural elements. 

Additionally, the less bulky structural elements would further reduce the cost of foundations. 

In addition, the nature of EPS MU would reduce the necessity of implementing expensive 

thermal insulation materials on external walls (Al-Jabri et al, 2005). Furthermore, EPS 

mortars are proven to have good quality in terms of water absorption, chloride ion penetration 

and sulphur attack (Ravindrarajah and Tuck, 1994; Babu and Babu, 2003). 

1.2 Work Objectives and Scope  

The main objective of this research is to investigate the use of expanded polystyrene (EPS) in 

producing lightweight mortar solid brick and hollow block units that have superior thermal 

insulation relative to the existing masonry units in the Egyptian market. A parallel objective 

is to examine the confinement effect of ferrocement technology and polypropylene fiber wrap 

on EPS mortar hollow blocks. The following masonry units are produced and tested in the 

present research to realize these objectives: 

1. Plain EPS mortar hollow blocks with no reinforcement or polypropylene fibers. 

2. Ferrocement EPS mortar hollow blocks in which the block were reinforced with welded 

wire mesh or fiberglass wire mesh. 
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3. Polypropylene Wrap EPS mortar hollow blocks in which polypropylene fibers were 

added to mortar mix. 

4. Plain Solid EPS concrete bricks 

The hollow blocks have dimensions of 400x200x 200mm and have two cylindrical holes each 

of 125mm in diameter. The plain solid bricks are of size 245x110x65 mm. The EPS hollow 

blocks and solid bricks have dense, medium and light densities according to the amount of 

EPS used in the block production. 

The research parameters are: 

1. The EPS content in mortar is varied to produce EPS mortars with different density 

2. The reinforcement type is varied in the EPS mortar hollow blocks; plain (no 

reinforcement), steel wire mesh reinforced, GFRP mesh reinforced 

During this research several tests and examinations are performed as follows: 

1. The mechanical properties of cubic and cylindrical specimens made of several EPS 

mortar mixes are determined 

2. For each of the tested mixes solid bricks, ferrocement EPS mortar hollow blocks, 

polypropylene wrap EPS mortar hollow blocks and plain EPS mortar hollow blocks are 

produced 

3. The mechanical and thermal properties of solid EPS mortar bricks are determined 

4. The mechanical properties of the three types of EPS mortar hollow blocks are 

determined 

5. The durability aspects of the three types of EPS mortar hollow blocks are determined 

6. A finite element model is constructed to estimate the thermal conductivity of EPS 

mortar hollow blocks.  

The outcome of the mechanical and physical tests is be reported. The effect of the inclusion 

of EPS mortars on the mechanical and thermal properties of mortar will be reported and 

analyzed. Also the failure pattern of EPS mortars will be cross-compared according to the 

changing parameters.  

The mechanical properties of the three types of EPS mortars hollow blocks is cross compared 

with the mechanical properties of cubic and cylindrical specimens. More importantly, the 

effect of ferrocement and polypropylene wrap confinement will be assessed in terms of the 
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effect on compressive strength, failure pattern and durability aspects.  The behavior of the 

proposed ferrocement and fiber wrap EPS mortar hollow blocks and solid EPS mortar bricks 

will be interpolated based on the mechanical, physical and failure pattern of EPS mortar, 

CMU, ferrocement and encased ferrocement CMU under compression highlighted in 

literature. 

1.3 Thesis Organization 

This Thesis is composed of six chapters. In addition to this Chapter, the introduction, the 

remaining five Chapters are organized as follows: 

Chapter 2: Introduces a review of the available literature. It intertwines the different subjects 

discussed in this thesis.  It explains in details the mechanical characteristics of EPS mortar 

and the parameters affecting its strength and ductility. It also presents the work of previous 

researchers on EPS hollow blocks and bricks. In addition, the confining effect of ferrocement 

will be addressed. References that studied the durability of mortars generally and EPS mortar 

specifically will be also discussed. Finally, studies done on the thermal characteristics of EPS 

mortar and thermal numerical modeling are furnished in details. 

Chapter 3: Contains the details of the experimental program carried out to fulfill the 

objectives of this thesis. Mixture proportions and design of EPS mortar used in the 

experimental program are reported. A discussion of the sample size and number of 

mechanical tests applied on EPS mortar specimens, hollow blocks and bricks is presented as 

well. In addition, descriptions of the durability and thermal tests are included. 

Chapter 4: Presents an analysis and discussion of the test results. Effects of different test 

parameters on the behavior of the test specimens are investigated in the light of available 

previous research. 

Chapter 5: Presents the numerical model for calculating the equivalent thermal conductivity 

of the developed EPS hollow block units and elaborates on the analytical results of this 

model. 

Chapter 6: Summarizes the study, followed by the main conclusions drawn from 

experimental and analytical investigations. Furthermore, recommendations for future study 

are suggested. 
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Chapter 2 

Literature Review 

 
2.1 Introduction 

The presented literature review in this chapter covers the research areas related to the 

objective of this thesis. The current thesis research focuses on the use of expanded 

polystyrene for production of lightweight mortar and manufacturing thermally efficient 

lightweight hollow blocks and bricks. Lightweight mortar and concrete has attracted 

engineers and environmentalists. The mechanical properties of several types of lightweight 

mortar and concrete were the subject of investigation by some researchers. However, very 

little information is available in the literature on its use for the production of a final building 

element. As the ferrocement concept was utilized in the production of the hollow blocks 

proposed in this thesis, this chapter will also the cover the related ferrocement research.  The 

proper explanation of the mechanical, physical, and thermal behavior of such complex 

building element requires crossing several references. The main topics addressed in this 

chapter are mechanical properties of EPS cement composites, ferrocement confining behavior 

under compression, previous research related to EPS blocks and bricks, physical properties of 

cement composites and EPS mortar subjected to aggressive environments, thermal properties 

of cement and EPS mortar, and equivalent thermal conductivity of blocks through thermal 

numerical modeling.  

2.2 EPS Cement Composites 

2.2.1 Mechanical characteristics  

The primary attractions of EPS cement composites are their lightness and energy absorption. 

Despite their low-strength, EPS cement composites proved versatile enough to attract more 

researchers to launch a full-scale study of the rest of its mechanical and physical properties. 

This section recites the attempts researchers spent trying to explore and engineer the 

mechanical, physical, durability, and thermal characteristics of EPS mortar and concrete. 

Perry et al. 1991 experimentally studied the mix preparation and mechanical behavior of 

three EPS mortar mixes. They reported mixtures in which replacement of 40, 50 and 60 per 
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cent by volume of the mortar mix by beaded EPS.  The reported mixes had 1.2, 1 and 0.8 

specific gravities. In the reported mixes, the cement-to-sand ratio was unity, water-cement 

ratio (w/cm) ranged between 0.35 and 0.45 and fine sand of maximum size of 1.2 mm was 

used. the volume of sand ranged from 350 kg/m3 for the lightest mix and 550 kg/m3 for the 

densest one. The diameter of the EPS balls ranged from 2.5 mm to 5.5 mm with a mean 

diameter of 3.8 mm and ball density of 20 kg/m3. The strength of EPS mortar was controlled 

by varying the mix proportions. They reported the compressive strength, stress-strain curves 

and proposed a modification to Pauw’s equation for the calculation of the static modulus of 

elasticity, E. They mixed EPS mortar by mixing sand and cement first then adding water with 

super plasticizer if needed.  After sufficient mixing of the mortar, EPS beads were added and 

mixed thoroughly. They also reported that hand tamping rather than vibration to avoid  

segregation. Despite using superplasticizer, poor workability and surface finish were 

observed in their work. They tested cylinders of 100 mm diameter and 200 mm height to 

obtain the compressive strength and stress-strain curves. The obtained compressive strength 

ranged between 4 and 12 MPa for corresponding air-dried densities 850 and 1250.kg/m3. 

They concluded that the relationship between compressive strength and density of EPS 

mortar was approximately linear. The plotted stress-strain relationship showed that EPS 

mortars have a maximum strain at maximum stress equal to 2000 microstrains which is 

similar to that of conventional concrete but at much lower maximum stress. However, EPS 

mortars exhibited a more-or-less linear stress-strain behavior which was attributed to the 

nature of internal micro-cracking of lightweight concrete that allowed it to exhibit higher 

strains capacity at maximum stresses. The transition towards linear stress-strain behavior 

increased with the increase in the EPS content. They measured the secant static modulus and 

proposed the following formulae to predict E for the proposed density range: 

250531070 ... cfE   

50835015 ... cfE   

Where, E is the static modulus of elasticity in MPa, ρ is the air-dried density in kg/m3 and fc 

is the compressive strength in MPa of 100 x 200 mm cylinders. 
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Ravindrarajah and Truck 1994 performed experimental investigations on the mechanical and 

physical properties of EPS mortar and concrete made with treated EPS beads. They presented 

in this research the only available discussion about chemical resistance of EPS mortar and 

concrete. The mix design was formed of Portland cement (PC), silica fume (SF), 10 mm 

coarse aggregates and commercially available EPS spherical beads that are coated with a 

hydrophilic coat. Their work covered two research topics, EPS mortar and EPS concrete 

keeping a constant nominal density of EPS cement composite at 1350 kg/m3 and a constant 

cement content of 400 kg/m3. In the first topic, they varied water cement ratio between 0.35 

and 0.45 while in the second one they introduced coarse aggregates, substituted  a constant 10 

per cent of PC with SF and kept w-cm ratio constant at 0.4. The EPS bead content was 

targeted to occupy 40 per cent of the cement composite. 90 per cent of the EPS spherical 

beads had a maximum diameter of 2.36 mm and particle density was 67 kg/m3. They adopted 

mixing technique similar to the one adopted by Perryet al. 1991. For compressive strength, 

they tested cylindrical specimens of dimension 100 mm diameter and 200 mm height as well 

as 100 mm cubes. For tensile strength the tested cylinders of the same size as those tested for 

compression. 150 mm diameter and 300 mm height cylinders were used to determine the 

static modulus of elasticity testing. Also 100x100x380 mm prisms were tested to determine 

pulse velocity and shrinkage. They reported that despite their precautions, the EPS cement 

composite mixes were dry and lumpy, full compaction was impossible and maximum air 

content mounted to 13.1 %. However, segregation was not seen in slices they prepared to 

examine visually and beads were uniformly distributed. They also reported that the 

compressive strength increased from 5.6 to 11.9 MPa when w/c ratio decreased from 0.6 to 

0.35. They noted that the ratio between the 7-day and 28-day compressive strength of EPS 

cement composited decreased with the increase in w/c ratio and that all mixes showed a 

continuous increase in compressive strength gaining between 28 and 90 days. They found 

that indirect tensile strength of EPS cement composites ranged between 13.6% and 15.3% of 

its the compressive strength and it exhibited a decreasing trend with the increase in w/c ratio. 

They proposed a modified equation for the determination of E and stated that it increased 

with the decrease in w/c ratio where w/c of 0.35 produced E of 11.9 GPa. 

5.01.1146.1 cFE   
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Where E is the modulus of elasticity in MPa of 150 x 300 mm cylinders, ρ is the dry density 

in kg/m3; Fc is the compressive strength in MPa of 100 x 200 mm cylinders. They reported 

that the EPS concrete specimens exhibited relatively higher shrinkage due to the lack of 

restrain EPS have on the surrounding matrix.  

Babu and Babu 2003 studied the strength and durability of EPS concrete and mortars using 

silica fume (SF) as partial replacement of Portland cement (PC) in a study that aimed at 

developing structural EPS concrete of minimum compressive strength of 17 MPa and density 

range of 1450 to 1850 kg/m3. Ten mix designs were obtained by varying the percentage of 

PC replacement with SF, types of sand and coarse aggregates, volume and bead size of EPS. 

Three percentages of SF were used; 3%, 5% and 9%, two types of sands were varied; finer 

than 2.36 mm and finer than 1.18 mm, and two sizes of coarse aggregates were varied; 10 

mm and 16 mm. Finally two sizes of EPS beads were used, 6.3 mm and 4.75 mm. The total 

volume of cementitious materials varied between 360.5 and 659.45 kg/m3 and w/c ratio 

varied between 0.44 and 0.273. Compressive strength tests were performed on 100mm cubes 

at 1, 3, 7, 28 and 90 days, also absorption test was performed on the same specimens after 90-

days. Split tensile tests were performed on 100x200mm cylinders. EPS mortars and concrete 

showed very good workability and finishing which was attributed by the authors to the 

combination of SF, sufficient volume of cementitous, materials and super plasticizers.  

They reported that the compressive strength development of EPS cement composites 

increased with the increase in the percentage of SF and strength gain after 90 days was 

negligible. The 7-day compressive strength was 75%, 85% and 90% of the 28-day 

compressive strength for 3%, 5% and 9% SF respectively. Also, they found that the 

compressive strength of EPS concrete increased linearly with the density increase and EPS 

volume decrease. They reported also that the strength of EPS concretes made with small 

sized beads was higher than the ones made with a combination of the two bead sizes for the 

same mix proportions. They also reported that for similar mix proportions and densities, EPS 

mortars yielded similar compressive strength to EPS concretes made with 10 mm coarse 

aggregates.  

For relevance, only the EPS mortar mixes will be discussed. The three EPS mortar mixes had 

fresh density of 1503 kg/m3, 1748 kg/m3 and 1546 kg/m3, with corresponding compressive 

strength 10.2MPa, 18.5 MPa and 15 MPa, and corresponding tensile strength of 2.10 MPa, 
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2.20 MPa and 2.15 MPa, and corresponding water absorption percentage of 4.596%, 3.140% 

and 2.570. The strongest mixes achieved compressive strengths of 16.2 and 20.8 MPa. They 

attributed the relatively low strength of the mixes to the zero strength of the EPS aggregates. 

They studied the failure mechanism of EPS concretes under compressive load and reported it 

to be gradual and that specimens retained load even after failure without disintegration. They 

attributed this near ductile behavior to the high energy absorption characteristics of EPS 

concrete and mortar. The split tensile strength was 1.53MPa and 2.32 MPa for wet densities 

1552 kg/m3 and 1873 kg/m3. They found that the split tensile strength increased with the 

increase in the compressive strength and formulated an empirical equation that relates 

between the two mechanical properties in the form: 

370880 .)(log.  cst FF  

Where, Fst is the split tensile strength and Fc is the compressive strength all in MPa. The split 

tensile failure mechanism of EPS concrete was very different from that exhibited by 

conventional concrete.  

Laukaitis, et al. 2005 studied the mechanical characteristics of crumbled, and large and small 

spherical EPS aggregates included in aerated cement matrix. By far this is one of the very 

few research done on the utilization of irregularly shaped EPS wastes as lightweight 

aggregates. However, this research covers only very light EPS cement composites of density 

below 350 kg/m3. The mix design constituted of cement, surfactant (foaming agent), and EPS 

aggregates. The sieve analysis of large spherical EPS aggregates revealed 43.93% of size 

10.2mm and 55.92% of size 5mm, the rest are of sizes 2.5mm and below. The size 

distribution of the small spherical EPS aggregates was: 1.45%, 60.89%, 37.62 % of 

respective sizes 10.2mm, 5mm, 2.5mm and the rest are below 2.5mm. The sieve distribution 

of the crumbles particles was 1.02%, 28.27%, 63.85% and 6.86% for sizes 10.2mm, 5mm, 

2.5mm, and smaller than 2.5mm. Three ratios of foam cement to EPS aggregates were 

studied, namely, 1:1, 1:2 and 1:3. The tested specimens were 100mm and 400mm cubes. The 

compression tests revealed that the compressive strength of EPS cement composites 

depended on its density and the EPS granular shape. They found that EPS foam cement made 

with fine EPS spheres had 40% higher compressive strength than when made with large 

spheres and 68% higher than when made with crumbles. They correlated the decrease of the 
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compressive strength to the shape of matrix extracted from the ESM photographs. The lowest 

compressive strength achieved for crumbles EPS cement was 0.2 MPa at a density of 220 

kg/m3 and the highest was 0.55 MPa at a density of 300 kg/m3 (these values are approximate 

as they were extracted from a plot presented in that publication).  They presented three 

equations, one for each EPS granular shape, to predict the compressive strength of EPS foam 

for different light densities: 

Fine spherical EPS: X
cF 0101002980 ..   

Large spherical EPS: X
cF 0084007440 ..   

Crumbled EPS: X
cF 0132001040 ..   

Where, Fc is the compressive strength in MPa and ρ is the density in kg/m3. Also the 

researchers measured the modulus of elasticity (E) and found that EPS foam cement made 

with EPS crumbles had the lowest values. The values of E obtained for crumbled EPS foam 

cement ranged between 150 MPa and 300 MPa for corresponding densities 250 kg/m3 and 

300 kg/m3. The authors used electronic scanning microscope (ESM) to help study the 

interfacial zone between the foam cement matrix and the EPS aggregates. The ESM revealed 

that the cement matrix of EPS cement made with large spherical granules took the shape of 

small honeycomb cavities separated from each other by thin film or pellicles. The surface of 

the matrix of crumbled EPS cement revealed a more complex and irregular shape of 

honeycombs that are connected together by thin damaged pellicles. Fine granules gave the 

cement matrix the shape of very regular arrays of bubbles without any cavities or pellicles. 

After compressive tests, they analyzed the failure planes based on the ESM photographs and 

fount that after crushing, foam cement made with large EPS spheres; the granules which are 

covered with thin film of cement broke apart but were not pulled out of the matrix. Crumbled 

EPS cement showed that when crushed, the EPS crumbles break apart but remain intact 

within the matrix which indicated very good cohesion. Fine EPS cement showed insufficient 

cohesion when crushed and EPS granules pulled out of the binder leaving shell shapes.  

Babu et al 2006 experimentally investigated the effect of EPS particle size on the strength 

and moisture migration of EPS concrete. In this study they used two types of polystyrene 

aggregates; expanded EPS and unexpanded UEPS and used two types of pozzolanic 
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materials; fly ash (FA) and silica fume (SF). The experimental program investigated a range 

of densities between 1000 and 1900 kg/m3plus control specimens made of normal weight 

concrete (NWC). All the EPS concrete and mortar specimens contained a constant 

cementitoius ratio of 563 kg/m3, 30% of which is formed of fly ash, and constant w/c ratio of 

0.35. In addition, one UEPS series of specimens were designed with 35 % FA substituting PC 

and another with 10% SF substituting PC. Sand finer than 2.36mm and coarse aggregates 

finer than 8mm were used. Two sized of spherical EPS aggregates were used; 1.18mm and 

6.3mm with particle density of 23.6 kg/m3 and 9 kg/m3 respectively. One size of UEPS 

aggregates was used which was 1.18mm to with a particle density of 66.5 kg/m3. The 

compressive strength tests were performed on 100 mm cubes at 1, 3, 7, 28 and 90 days. The 

absorption test was performed on the same specimens after 90-days and the split tensile on 

100x200mm cylinders. The absorption test specimens were prepared as in Babu and Babu 

2003 and moisture migration was measured through an indigenous test set up of the author’s 

design. The results of moisture migration and absorption tests were cross—compared. The 

significance of this research is that it compiled the various experimental data extracted from 

different sources and formulated two general equations, one that relates compressive strength 

to EPS concrete and mortar density and the second relates the spit tensile strength of EPS 

concrete and mortar to the compressive strength.   

They reported that the compressive strength of all EPS mortar and concrete specimens 

increased with the decrease in EPS size and noted that this observation was more prominent 

in less dense mixes. They also reported that the compressive strength gain in EPS concrete 

and mortar made with FA continued till the 90th day. The 90-day compressive strength 

exceeded the 28-one by a range of 27% to 14% for the corresponding range of densities of 

1050 kg/m3 to 1820 kg/m3 and the range of compressive strength increase fell down to 9% to 

5% for the same corresponding densities when smaller EPS aggregates were used. When 

compared the compressive strength of specimens made with the more rigid UEPS, they found 

that the latter yielded 70% higher compressive strength and attributed this finding to the 

higher density of UEPS aggregates than that of EPS.  

On the other hand, the failure of EPS was gradual and specimens retained load after peak 

stress without disintegrating, unlike its UEPS concrete counterparts which exhibited brittle 

failure similar to that of NWC.  The failure of EPS concrete specimens was in a shearing off 
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manner (spalling) and EPS aggregates were seen bonded firmly to the concrete matrix even 

after failure, unlike UEPS which got de-bonded from the matrix.  

They proposed the following general equation based on their work and the work of several 

researchers that related the compressive strength (Fc in MPa) to the density (ρ in kg/m3) of 

fresh EPS concrete and mortar: 

69181 10310  .. cF  

A similar equation was also proposed to relate the compressive (Fc in MPa) and split tensile 

strengths (Fst in MPa) of EPS concrete and mortar: 

7933024160 .. cst FF   

This equation was developed based on the EPS concrete and mortar empirical data which 

showed that the split tensile strength increases with the increase in the corresponding 

compressive strength. They noted that the split tensile strength increased with decreasing the 

aggregate size of EPS concrete. They reported that EPS concrete split tensile failure was 

gradual failure and specimens did not split into two halves. The most ductile failure noted 

was for EPS concretes with EPS volume range between 35 and 50%.  The maximum 

compressive strength achieved by EPS concrete was 20 MPa and its UEPS counterpart was 

35 MPa.  

Bouvard, et al. 2007 experimentally investigated and numerically modeled mechanical 

characteristics of high performance cement mixed with millimeter sized EPS spheres. They 

mixed high performance cement of compressive strength around 150 MPa with different sizes 

and ratios of EPS spheres. Two types of distribution of EPS spheres were used; one-size and 

two-size distribution (bimodal). The monosize distribution had a diameter range between 

0.75mm and 1.1mm. The bimodal distribution had 30% of its volume consisting of diameter 

range between 0.75mm and 1.1mm and 70% of diameter range between 1.5mm and 2.6mm. 

Eight mixes with a density range between 432 kg/m3 and 961 kg/m3 that corresponded to 

cement volume ratio of 0.204 and 0.415 were achieved by changing the EPS content. The 

mechanical properties and micro structural observation by means of 3D imaging were 

performed on 4cm cubes. The 3D imaging enabled the identification of different phases in the 

composite. The extracted images were reconstructed and a series of radii and centers were 



www.manaraa.com

15 

 

obtained to depict numerically the distribution of EPS spheres in the cement matrix. The 3-D 

images were used to build a model that depicts the microstructure of EPS cements. Based on 

the radii and centers of the EPS spheres, a tessellation of polyhedral convex cells was 

produced in space. Each edge of the polyhedral represented a beam structure made of the 

cement matrix. The finite element analysis of this 3-D model allowed the authors to 

determine the stress-strain behavior of the composite under simple compression at the 

microstructure level. They tested the numerical model and agreed reasonably with the 

experimental results.  

The authors reported the compressive strength and plotted the stress-strain curves of the 

different EPS cement mixes. The maximum compressive strength was 11.4 MPa and 

correlated with the highest density while the minimum compressive strength was 0.03 MPa 

and correlated with the lowest density. They reported that the compressive strength of EPS 

cement could be readily modeled by Gibson and Ashby’s model, which assumes a power 

relationship between the strength and density. They concluded that the relative density of the 

conductive phase—the cement matrix density—was responsible for the thermal conductivity 

and strength results. In addition, they indicated that the size and distribution of EPS particles 

in the cement matrix tremendously alters the thermal and mechanical results.  Therefore, they 

suggested that further 3-D analysis should be adopted to engineer and optimize the properties 

of EPS cement composites. 

2.2.2 Improved failure characteristics of EPS cement composites 

Many researchers have identified the ductile failure of EPS mortar and concrete. However, 

few went into details of quantifying this phenomenon through identifying its affecting 

parameters. Two characteristic phenomena of EPS mortars will be discussed in this section, 

namely, the particle size effect and specimen size effect on nominal compressive strength. 

Miled, et al. 2007 investigated experimentally and numerically the effect of EPS particle size 

on the compressive strength of high performance EPS mortars of different densities. They 

also analyzed the EPS mortar failure mode at different EPS volume fraction (macro porosity). 

They investigated five EPS mortar mixes with different macro porosity and a control mix.  

The set EPS volume fractions were 0%, 10%, 20%, 30%,40% and 50% which corresponded 
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to densities 2289.1kg/m3 (control matrix), 2000 kg/m3, 1800 kg/m3, 1600 kg/m3, 1400 kg/m3 

and 1200 kg/m3. The volume fraction of EPS mix was calculated following this formula: 

EPSmatrix

concretematrixp





  

Where, p is the macro porosity, ρmatrix , ρconcrete and  ρEPS are densities of the control mix, the 

EPS mortar mix and the EPS beads respectively. The cement content ranged from 961.9 to 

500.22 kg/m3, the w/c and SF ratios were kept constant at 0.26 and 0.3 respectively. Three 

sizes of spherical EPS beads were tested, namely, 1mm, 2.5 mm and 6.3 mm. They tested 

fifteen mixes; five different porosities for each bead size. The experimental program 

comprised the evaluation of static modulus of elasticity and compressive strength. The 

modulus of elasticity was tested on 110x220mm cylinders. Two different cylindrical mould 

sizes were used for testing the compressive strength, 110x220mm and 44x88mm, in order to 

assess whether the particle size effect associated with EPS mortars is independent from 

specimen size effect.  

They reported that the elastic modulus of elasticity was independent from any particle size 

effect and depended only on the macro porosity of EPS mortar mix. They also noted that a 

near linear decrease in E was associated with the increase in the macro porosity of EPS 

mortar mix. The obtained results from the compressive strength test confirmed the influence 

of particle size effect on the compressive strength of EPS mortar mix.  For example for EPS 

mortar mix of macro porosity 0.24, the mixes made with 1mm beads yielded 60% higher 

compressive strength than the ones made with 6.3 mm beads and  mixes made with 2.5 mm 

were 30% stronger than the ones made with 6.3 mm beads. They also reported that the 

particle size effect vanished at higher macro porosities (p>0.5).  

In addition, they associated the failure mode of EPS mortar to its macro porosity. Low 

porosity EPS mortars exhibited a quasi-brittle failure mode characterized by longitudinal and 

localized splitting macro cracks that existed around the EPS beads zones. On the other hand, 

EPS mortars with high porosities exhibited a ductile failure mode characterized by dispersed 

micro cracks all over the mortar matrix around EPS beads. In addition, EPS mortars 

specimens of higher porosity were able to retain load without full disintegration. In attempt to 
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generate a numerical model that relates compressive strength to particle size and macro 

porosity, the authors divided the failure pattern of EPS mortars into two phases. The first 

phase depends only on the macro porosity of the mix and this phase is the elastic region, 

since E is independent of the particle size effect. The second phase is characterized by the 

evolution of cracks from micro-cracks to macro-cracks and is dependent on both the macro 

porosity and the particle size based on the analysis of failure mode. They proposed a 

numerical model that predicted the normalized EPS mortar compressive strength based on its 

macro porosity and EPS bead size. The particle size effect is a power law, and the 

numerically obtained results agreed well with experimental findings. 

Haidar and Pijaudier-Cabot 2002 varied the inclusion volume of EPS aggregates in mortar 

mixes in order to model the porosity effect on the mechanical and fracture characteristics of 

leached mortars subjected to acidic hazards.  They followed the experimental procedures 

proposed in Bazant’s size effect theory to assess whether the nominal strength of EPS 

mortars, i.e. porous mortars, is influenced by the size of tested specimens (structural size 

effect).  The size effect theory assumes that quasi-brittle materials, such as concrete, abridge 

two fracture mechanics theories, namely, the plastic limit and linear elastic fracture 

mechanics. The former assumes that the nominal compressive strength of a material is not 

affected by the specimen’s size while the latter assumes that a crack grows when the stress 

near the crack tip is more than the fracture toughness of the material (theory of elasticity). 

Because, the fracture process zone in concrete contains diffused cracks that coalesce and 

grow before reaching the nominal strength of concrete, the size effect theory presents the 

most suitable description of its failure and strength. It merely bridges the material strength 

and linear elastic fracture mechanics to capture the influence of the specimen’s size on its 

nominal compressive strength.   

The size effect theory is studied by the authors by plotting the nominal compressive strength 

of different specimens of similar geometry but different sizes. The results are compared 

against the two extreme theories, as presented in Figure 2.1. When the plotted results 

approach the constant limit on the left, this means that the size effect does not apply to the 

material. On the other hand, when the results approach the descending line on the right imply 

that the material follows the linear elastic fracture mechanics and that the structure’s size 

affects the nominal strength.  
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Figure 2.1: The size effect law basic plot is used to assess whether the nominal strength of the 
material is influenced by the size of the tested specimens (Bazant, et al. 1994) 

 

The authors studied four different EPS mortars of densities 2000, 1800, 1600 and 1400 kg/m3 

with corresponding EPS volume inclusion of 13%, 22 %, 31%, and 39% in addition to a 

control mix. The EPS beads of size range 3 to 7mm and sand with 20mm particle size were 

used in a mix designed with constant OPC to sand and w/c ratios of 0.46 and 0.4 respectively.  

OPC content ranged between 640 and 389 kg/m3 for the control and lightest EPS mortar mix 

respectively. The compressive strength was tested on cylindrical specimens of diameter 

110mm and height 220mm, the size effect was tested on four notched beams that were 

geometrically similar but varied size wise. The beams had four depths (D) of 40, 80, 160 and 

320mm, a constant width of 40mm, a constant length to depth and span to depth ratios of 8:3 

and 2.5 respectively. One notch of width 1.5mm and depth of D/6 was positioned on all four 

beams.  

It was found that the compressive strength and modulus of elasticity decreased significantly 

with the increase in the inclusion volume of EPS beads. The maximum obtained compressive 

strength and E were 36.8 MPa and 25.9 GPa for a density of 2000 kg/m3, while the lowest 

values were 16.1 MPa and 14 GPa for a density of 1400 kg/m3. They reported that with 

reference to the control cylinders, the compressive strength decreased by 40, 54, 61 and 72 % 

and E decreased by 22, 31, 49 and 58 % for corresponding EPS mortar mixes of 

corresponding densities 2000, 1800, 1600 and 1400 kg/m3.  The size effect tests revealed that 

the EPS mortar became more ductile with the increase in EPS volume inclusion. The plot 

proposed by Bazant, et al.1994 was regenerated for the control mix and the lightest EPS 

mortar mix (Figure 2.2). The authors pointed out that the strength of the EPS mortar beams 
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tended to fall more near the strength criterion, which was evidence of the increased ductility 

of lighter EPS mortars of the size effect. On the other hand, the control specimens followed 

clearly the size effect law. 

 

Figure 2.2: The regeneration of the size effect plot using the nominal strength obtained from 
the four control beams and their counterparts made with lightest EPS mortar 

(Haidar and Pijaudier-Cabot 2002) 
 

Moreover, the authors used acoustic emission to evaluate fracture localization in the control 

and EPS mortar specimens after failure. They found that the width of the fracture process 

zone, where the initiation and diffusion of micro-cracks in concrete occur before coalescing 

into macro cracks, increased with the decrease in the density of EPS mortars. This implies 

that the localization of failure diminishes with the decrease in the density of EPS mortars.  

2.2.3 Fiber reinforced EPS cement composite  

The properties of plain EPS mortars and concretes attracted many researchers especially 

because of its higher toughness. Comparatively, fiber reinforced mortars and concretes are 

known for their higher toughness and improved failure mechanism. Some researchers 

combined fibers with EPS mortar composites in attempt to examine the interaction between 

the crack diffusion offered by EPS inclusion in the matrix and  crack bridging offered by the 

reinforcing the matrix with fibers. 

Chen and Liu 2004 studied the inclusion of steel fibers in EPS concrete mixes made with 

silica fume and partial substitution of coarse and fine aggregates with two sizes of EPS beads, 

super plasticizer was used to improve workability. Two series of mixes were developed, each 
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contained six different EPS volumes and a control mix, the first series was made with OPC 

and the second one had 10% of OPC substituted by SF. The cementitious material and the 

steel fibers volumes were kept at a constant volume of 472 and 70 kg/m3 respectively, and the 

w/c ratio was 0.37. The fineness modulus of sand and the maximum coarse aggregate size 

was 2.85 and 20mm respectively, the steel fibers were 25mm long with aspect ratio equal to 

60 and the two EPS bead sizes used were 3mm and 8mm. The compressive strength, split 

tensile strength and shrinkage tests were performed on a density range of EPS concrete mixes 

between 800 and 1800 kg/m3 in addition to the control mixes. The compressive strength of 

100mm size cubes were tested at 3, 7, 14, 28 and 60 days. The split tensile was tested on 100 

mm cubes as well and the shrinkage specimens had dimensions 100x100x515mm and were 

tested at 3, 7, 14, 28 and 60 days.  

The authors found that the compressive strength of specimens made with SF showed more 

development at early age. For example, they reported that the ratios of the 7-day compressive 

strength to the 28-day compressive strength ranged from 70 to 75% and 85 to 90 % for EPS 

concretes made with OPC and 10% substitution by SF respectively. They also found that the 

compressive strength increased linearly with the increase in the EPS concrete density, the 

compressive strength of the control mix was 59.2 MPa at a density of 2435 kg/m3. They 

reported that at a density equivalent to 75%, 55%, and 35% of that of the control’s EPS 

concretes exhibited 35%, 30% and 20% of the control’s compressive strength respectively. 

The compressive strength of EPS concretes ranged between 10 and 25 MPa.  

In addition, the failure mode was gradual and specimens retained load without full 

disintegration. They reported that SF increased the compressive strength of EPS concretes by 

15%  and attributed this increase to the influence of SF on dispersing the EPS beads equally 

in the matrix and improving the interfacial bond between the EPS and the cement matrix. 

However, they reported that this strength increase is lowered to 8% at higher EPS volumes 

(55%) and advised the utilization of additional bonding agents at lower EPS concrete 

densities. On the other hand, the steel fibers improved tremendously the split tensile strength 

of EPS concrete, and the combination of SF and steel fibers increased its split tensile strength 

by up to 25%. In addition, the split tensile failure of the EPS concrete specimens made with 

steel fibers was gradual. Since that EPS aggregates provide negligible hindrance to concrete 

shrinkage, the increase in the volume of EPS in concrete increased the shrinkage of the 
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matrix.  The authors reported that the when the volume content of EPS was 55%, the 90-day 

shrinkage strains were 1121 micro strains, which is a disadvantage. On the other hand, they 

found that steel fiber reinforced EPS concrete with EPS volume 55% showed 90-day 

shrinkage strains equivalent to 610 micro strains. Therefore, the effect of steel fibers on the 

properties of EPS concretes was prominent in increasing the split tensile strength, improving 

the tensile failure mechanism, and resisting the surface straining due to shrinkage.  

Trussoni 2009 investigated the fracture properties of fiber reinforced and plain concrete 

lightened by the partial replacement of coarse and fine aggregates with EPS beads in his 

Ph.D. dissertation. He used the two fracture tests, namely, three point bending (TPB) and the 

wedge splitting (WS) tests. He discussed the test results using the ANOVA analysis to assess 

the effect of EPS partial replacement on fiber reinforced and plain concretes.  He analyzed 

the parameters of fracture mechanics and presented further illustrative evidence on the 

improved ductile failure of EPS concretes and to prove that EPS absolutely alters that fracture 

behavior of concrete when it is used as replacement to fine aggregates.  

The test program commenced with trial batches of EPS concrete (EPSC) were first designed 

to achieve a target wet unit weight of 1880 Kg/m3 and a target compressive strength of above 

20.7 MPa. The EPS beads were 1mm in diameter and w/c ratio was more or less 0.5. the 

normal weight concrete (NWC) mix ingredients were OPC, water, sand, coarse aggregates 

that constituted a corresponding volumes of 14% (317.5 kg ), 21.5% (154.2 kg), 39.5% 

(725.7 kg), and 25% (453.6 kg). Two sizes of coarse aggregates varied in the EPSC and 

NWC, 19 mm and 10 mm. Fibers were introduced at 0.3% of the volume of batches. EPSC 

was made by replacing 33% of sand by 1mm EPS beads, which produced an overall volume 

inclusion of 13%.  The test program included 12 batches, 3 NWC batches made with 19 mm 

coarse aggregates; one batch was plain, the second was polypropylene fiber PPF reinforced 

and the third was steel fiber SF reinforced. The same arrangement was repeated for 10 mm 

coarse aggregates. The 6 batches made for the NWC was repeated for EPSC to produce 6 

EPSC batches. The compressive strength test was conducted on 100 mm cylinders and cubes 

at 28-day maturity, and the fracture tests were conducted on notched 100x100x425mm 

beams. For the fracture tests, the author estimated the critical stress intensity factor KIC and 

the fracture energy Gf. The KIC is a parameter that defines the stress intensity around the 

crack tip at the initiation of its extension and Gf determines the energy absorbed by the 
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material when the crack is extending. Also the characteristic length (lC) was estimated which 

is a parameter that defines the fracture process zone FPZ the region in front of the crack tip in 

which the fracture energy is absorbed.  

The author found that the addition of EPS decreased the static modulus of elasticity by 38% 

for mixes made with 10 mm coarse aggregates and 44% for ones made with 19 mm coarse 

aggregates. In addition, the inclusion of EPS decreased the compressive strength by 56% for 

mixes made with 10 mm coarse aggregates and 55% for ones made with 19 mm coarse 

aggregates. On the other hand, he reported that EPSC exhibited a more ductile failure through 

the load-deflection curves. A long period of non-linear behavior was noticed before reaching 

the peak load for EPSC made with 10mm aggregates and a long period yielding plateau was 

noticed at the peak load of EPSC made with 19 mm aggregates. In addition, the author found 

that the specific fracture energy Gf and the characteristic length increased by a respective 

13% and 44% than that obtained by NWC. He reported that, the (lC) of EPSC was 37.4% and 

25.4% higher than that of NWC for mixes made with 10 mm and 19 mm aggregates 

respectively. A larger (lC) signified a more ductile failure. When the volume FPZ is large, 

stresses are redistributed and fracture becomes gradual. Large FPZ allow the formation of 

micro-cracks that coalesce into macro-cracks through a mechanism of releasing the stored 

elastic energy and conducting stresses to other regions. This mechanism is known as strain 

softening which is characterized by the controlled dissipated of energy in the matrix resulting 

in a ductile failure.   

Although it was expected that the lower peak load of EPSC would reflect in a lower Gf and 

lC, as expected, it was reflected on the results of KIC of EPSC were 48.2% and 34.3% lower 

than that of NWC for mixes made with 10 mm and 19 mm aggregates respectively. On the 

other hand, the author reported that generally the inclusion of SF and PPF reduced the 

ultimate load carried by NWC and EPSC and increased the load-retaining capacity past the 

initiation of cracks. This too was reflected on KIC of EPSC which was 44.8% and 45.6% 

lower than that of PPF reinforced NWC for mixes made with 10 mm and 19 mm aggregates 

respectively. Also the values of Gf were lower by 12.5% and 20.8% from that of PPF 

reinforced NWC for mixes made with 10 mm and 19 mm aggregates respectively. The lC was 

reduced by 24.7% and 26.8% from that of PPF reinforced NWC for mixes made with 10 mm 

and 19 mm aggregates respectively. For the SF reinforced EPSC, KIC obtained were 52.7% 
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and 31.6% lower than that of SF reinforced NWC for mixes made with 10 mm and 19 mm 

aggregates respectively. Also the values of Gf were lower by20% and 20.9% from that of SF 

reinforced NWC for mixes made with 10 mm and 19 mm aggregates respectively. The lC was 

reduced by 20.9% for mixes made with 10 mm and increased by 5.9% for mixes made with 

19 mm aggregates when compared to their respective SF reinforced NWC.  

The author found that the analysis of the load vs. deflection curves for SF reinforced EPSC 

displayed that the SF and EPS work together in two different mechanism to enhance the 

fracture behavior. The first mechanism was induced by the EPS aggregates that increased the 

volume FPZ and the second mechanism was transferring stress through crack bridging 

induced by SF. It is worth noting that the FPZ volume increase was also evident in the load 

deflection curves measured by Trussoni 2009, which indicate a smooth transition between the 

peak load and the post-peak strain softening behavior. The largest lC was 570.6 mm which 

belonged to SF reinforced EPSC made with 19 mm aggregates. The author also reported that 

SF reinforced EPSC had the highest average (lC). On the other hand, PPF reinforced EPSC 

produced the lowest lC made with 19 mm aggregates (296 mm). The author concluded that 

the inclusion of EPS (without fibers) in concrete increased the FPZ, which resulted in a rather 

plastic and gradual failure as compared to the brittle and sudden failure of NWC. In addition, 

the inclusion of SF and EPS in concrete has a dual mechanism of strain softening and crack 

bridging. The inclusion of PPF in EPS concretes increased the load-retaining capacity after 

crack initiation. 

2.3 Thermal Properties 

2.3.1 Experimental investigation of thermal conductivity of EPS cement composites  

Accurate estimation of the thermal mass of building envelopes is essential for the calculation 

cooling and heating loads. The most widely implemented building envelope units are hollow 

blocks and bricks because of their availability and low-cost. The research conducted on 

estimating the thermal characteristics of EPS mortars and concrete is scarce and undedicated. 

Research and analysis on the thermal conductivity (k-value) is very insufficient. However, 

this section provides the research done that contained thermal analysis of EPS cement 

composites. 
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Bonacina, et al. 2003 conducted one of the very rare studies on the heat transfer properties of 

EPS mortar. This research experimentally measured and analytically discussed the effect of 

moisture content on the thermal transmissivity (the total k-value) of autoclaved and EPS 

mortars. However, its significance lies in the fact that it is one of the few studies that 

analyzed the heat transfer in porous materials due to the three modes; conduction, convection 

and radiation. EPS is essentially formed of 98% gas entrapped in thin shells of polystyrene 

while concrete is 100% solid. The microstructure of EPS cement composites could be 

simulated by conductive concrete shell surrounding gaseous cavities. Heat transfer in such a 

structure occurs by conduction in solids and gases, convection in the gaseous volumes and 

radiation between the interfacial zones of concrete and EPS.  The evaluation, interaction, and 

simulation of these three modes were studied by the authors in the presence of moisture 

inside the pores of the composites. They formulated a mathematical model to predict the total 

transmissivity by ignoring the convection and accounting for the other two heat transfer 

modes. The total thermal transmissivity is the summation of the transmissivity due to 

conduction (conduction k-value) in mortar and EPS and transmissivity due to radiation 

(radiation k-value) at the EPS-mortar interface.  

The authors formulated a set of mathematical equations that solves for the total transmissivity 

then validated the mathematical model experimentally.  They measured the total k-value of 

autoclaved and EPS concrete with respective densities 477 kg/m3 and 458 kg/m3 with the heat 

flow meter method. They conditioned the 100 mm test samples at 20 degrees Celsius at three 

different relative humidities; 35%, 50% and 80%.  Then the k-value was measured at 

temperature difference between the hot and cold surface of 5, 10 and 20 degrees Celsius. 

They found that the transmissivity due to radiation in autoclaved and EPS concretes 

contribute to only little percentage and that their mathematical model agrees with the 

experimental results with a margin of error of 0.5%. The total transmissivity varied with 

temperature gradient as well with relative humidity. The model evaluated the total k-value of 

EPS and autoclaved concretes at different moisture content. They concluded that their model 

could be a very good tool in estimating the total k-value of porous materials without the need 

to experimental measurements. 

Laukaitis, et al. 2005 performed thermal conductivity tests, in addition to their experimental 

program discussed earlier in section 2.2.1. The thermal conductivity test was conducted with 
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the heat flow meter method on a specimen size of 305x305mm and thickness range 30 to 80 

mm. The thermal conductivity ranged from 0.1 W/mK to 0.045 W/mK for corresponding 

densities 150 kg/m3 and 350 kg/m3 (these values were extracted from the presented graph in 

this paper). They found that the k-value was more affected by the density of the composite 

than by the shape of EPS granules. However, for the same density, composites made with 

EPS crumbled granules revealed the lowest k-value. The thermal conductivity ranged from 

0.1 W/mK to 0.045 W/mK for corresponding densities 150 kg/m3 and 350 kg/m3 (these 

values were extracted from the presented graph in this paper). The authors presented three 

equations that correlate the thermal conductivity to the composite’s density; an equation is 

dedicated for each EPS granular shape. 

Fine spherical EPS: 0363000020 ..  K  

Large spherical EPS: 024300002840 ..  K  

Crumbled EPS: 03500001680 ..  K  

Where, K is the k-value in W/m. K and ρ is the density in kg/m3. 

Bouvard, et al. 2007 experimentally investigated and mathematically modeled the thermal 

characteristics of high performance cement mixed with millimeter sized EPS spheres in the 

same study too (section 2.2.1). The thermal properties were measured using the hot wire 

method and specimen size was 4x4x16cm. The thermal conductivity of EPS cement mixes 

were found to increase with the increasing the density of the composites. The k-value ranged 

between 0.13 and 0.314 W/mK.  The authors fitted the experimental thermal results against 

several models and found that the best model to predict the k-value is Differential Effective 

Medium (DEM) known as asymmetric Bruggemann’s estimation. This model assumes that 

the cement matrix remains connected no matter how much is the EPS volume fraction and is 

solved iteratively to obtain the effective thermal conductivity that is a function of the k-value 

of EPS and cement matrix as well as their corresponding volume fraction.  

2.3.2 EPS concrete blocks and bricks strength and thermal insulation 

Godwin, 1982, announced the release of the first load bearing, thermally insulating building 

bricks made with expanded polystyrene concrete after 12 years of research. The 100 mm EPS 

concrete bricks were economic and were primarily proposed to function in load-bearing wall 
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panels intended to be built in poor areas in cement producing countries. He proposed the 

construction of anti seismic houses using these blocks and their utilization in building shelters 

in disaster areas. The cost, labor, and equipment analysis of constructing EPS bricks 

production factory of 40, 000 bricks daily production capacity was also hashed over in this 

research. He claimed that villagers and house owners could build houses themselves using 

panels produced from EPS blocks and assumed the next step should be in producing EPS 

concrete hollow blocks for load-bearing applications.  

Hago, et al. 2002; 2004 and Al-Jabri, et al. 2005 developed a comprehensive study of the 

structural and thermal properties of lightweight aggregate concrete hollow blocks. They 

developed a comparative study between hollow blocks made from NWC, vermiculite and 

EPS lightweight concretes to optimize strength and thermal insulation. The experimental 

parallel programs aimed at producing several mixes of EPS concrete and vermiculite of 

several densities by varying the volumes of water, sand, 10 mm coarse aggregates and 

lightweight aggregates. The w-cm ratio used in EPS concrete was kept at 0.6 and the OPC 

volume was kept constant. The EPS beads had a diameter range between 1 and 6 mm. The 

cement content was kept constant. The vermiculite concrete mixes density ranged between 

2242 and 1405 kg/m3, and the EPS concrete density ranged between 1555 and 850 kg/m3. 

They tested 100mm cubes for compressive strength and hollow blocks of dimensions 

200x200x400mm with cubical holes of dimensions 110x75x200mm. Another type of 

lightweight concrete blocks was formed of an EPS plate molded, sandwiched, between two 

normal-weight concrete faces and was also tested. The experimental tests comprised 

compressive tests on cubes and hollow blocks, masonry column tests and thermal 

conductivity tests on hollow blocks. The thermal conductivity test was performed by means 

of guarded hot box built specifically for the blocks’ size by the authors following the 

guidelines of ASTM-C236-89.  

The compressive strength and thermal conductivity tests were conducted on all the mixes of 

the hollow blocks made with vermiculite concrete, the optimum criteria corresponded to 

18.68 kg weight, 1168 kg/m3 gross density, 2.2 MPa block compressive strength, and k-value 

corresponding to 0.76 W/m.K. On the other hand, the compressive strength of the EPS 

concrete cubes ranged between 7.05 MPa for the highest density and 0.92 MPa for the lowest 

one.  The authors selected an optimum mixture of 1320 kg/m3 density which produced 5.52 
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MPa cube compressive strength, and hollow blocks of 12.77 kg weight, 798 kg/m3 gross 

density, 3.53 MPa block compressive strength, 2.24 MPa masonry column compressive 

strength, and k-value corresponding to 0.60 W/m.K. The properties of the sandwich concrete-

EPS block, which the authors dubbed PolyBlock2 were 22.68 kg weight, 1418 kg/m3 gross 

density, 10.2 MPa block compressive strength, 7.56 MPa masonry column compressive 

strength, and 0.616 W/m.K. thermal conductivity. The results were compared against the 

properties of ordinary hollow block concrete of weight: 19.06 kg, gross density: 1193 kg/m3, 

compressive strength range: 5-15 MPa, masonry column compressive strength: 5.48 MPa, 

and k-value of 1.60 W/m.K. The authors concluded that the EPS beads concrete produced an 

optimum lightweight concrete hollow blocks of low thermal conductivity and suitable 

strength for non-load bearing applications. They further extended their research to build three 

rooms, one with ordinary hollow blocks and the other two were built with EPS concrete 

hollow blocks (PolyBlock1) and PolyBlock2 (Al-Jabri, et al. 2005). The authors monitored 

the temperature of its interior walls during winter and summer and reported that the inside 

walls temperature in the room built with PolyBlock1 was the lowest. 

Gaggino, 2006, agreed with Godwin’s announcements, and more, she put them in numbers 

and market comparisons. She reported the mechanical and physical properties of the plates 

made with EPS mortar bricks—as she referred to them instead of panels—were used in low-

income ecological housing in Argentina and Uruguay. EPS mortar bricks replaced traditional 

earth-cooked ones that were produced from a polluting desertification-causing industry. She, 

too, believed that EPS mortar bricks can be produced domestically by house owners in 

impoverished areas and went further by presenting the mix design, tools and final products. 

The EPS mortar bricks and plates were produced from EPS waste crumbles, cement and 

water. The plates were longitudinally and transversally reinforced with 6 mm diameter iron 

bars at the mortar joints.  

A comparative strength, durability, thermal conductivity and cost analysis of the EPS 

concrete plates and other building systems and materials available in the market were 

presented in this research. The proposed EPS mortar brick was molded by means of a 

mechanical press and had a bead size of 5-7 mm range. The EPS mortar brick plate had 

dimensions of 20 cm width, 240 cm length and 7.5 cm thickness and unit weight of 600 

kg/m3. Its compressive strength, thermal conductivity and water absorption values were 3.92 
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tons, 0.15 W/m.K., 9% to 15.7% respectively and the plate cost $27. Gaggino, 2006 

compared between the 5 cm thick traditional concrete brick walls and found that EPS mortar 

plates are 4 times lighter, 6.4 times more thermally insulating, 6.3 times less compression 

resistant, and 1.2 times cheaper. She performed the same comparison with other 

commercially available block and brickwork.  She concluded that reinforced EPS mortar 

plates serve as thermally insulating external wall system for non-load bearing applications. 

2.3.3 Numerical evaluation of the equivalent thermal conductivity of hollow blocks 

 The instrumentation required to measure the thermal conductivity of hollow block units is 

very limited in Egypt. Only one environmental chamber operating by means of guarded hot 

box method is available and it measures the U-value, which is the overall thermal 

conductivity of walls. The only obvious solution was to either construct a guarded hot box, 

which requires strict quality control and expertise or opt for numerical modeling of the 

hollow blocks.  

Numerical analysis of heat transfer problems through convection and a combination of 

convection and radiation in square cavities have been extensively researched (De Vahl Davis 

1983; Fusegi, et al. 1991; Barakos and Mitsoulis 1994; Kumar and Eswaran 2010). Recently, 

the numerical analysis of the heat transfer problem inside the cavities of hollow blocks has 

attracted many civil and architectural engineers. The easiness by which the number and 

geometry of the cavities could be simulated, in addition to the advanced computational power 

made possible the accurate simulation of the heat transfer rate flowing through a building 

envelope made of hollow blocks. Many researchers proved that complex interactions between 

the three modes of heat transfer occur in blocks and bricks that contain cavities. The 

numerically obtained equivalent thermal conductivity of hollow blocks and bricks 

considering the three modes of heat transfer very much simulates the obtained experimental 

results. 

J. del Coz Diaz, et al. April, 2008 developed a capstone numerical and experimental study the 

of conduction, convection and radiation phenomenon in walls made of hollow bricks. The 

experimental phase of their research yielded five compositions of different densities of 

lightweight concrete and the corresponding k-value. Three types of mortars, insulating, light 

and ordinary, were also experimentally developed and tested for their thermal conductivities. 
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They proposed four different configurations of hollow bricks of dimensions 0.20x0.30x0.35m 

and numerically analyzed each shape for the five lightweight concrete cases. Four 2-D 

models, one for each hollow brick type, were developed to compute the equivalent thermal 

conductivity of an assembly of five bricks to account for both the cavities in the brick and the 

recesses between them. At this stage, the best hollow brick configuration was selected based 

on optimization between the weight of the brick (for laborers comfort and productivity) and 

thermal efficiency. A 3-D model was built using the optimum hollow brick configuration 

with the variation of the thermal conductivity of the lightweight concrete (5 cases) and the 

mortar type. They concluded that they have met the Spanish Building Standard Code (CTE 

project) requirements with the proposed lightweight hollow bricks. they also concluded that 

the overall equivalent thermal conductivity of the walls increased with the increase of K-

value of both the material of the brick and mortar. They suggested although the thermal 

efficiency of the proposed hollow brick wall is high, and its weight is light, it is expected to 

carry smaller dead-loads. Finally the accuracy and versatility of finite element models in 

depicting the equivalent thermal conductivity of complex wall structures were praised.   

In another research, J. del Coz Diaz, et al. June, 2008 proposed other hollow brick 

configurations of by varying the size and holes configurations. The same process was 

repeated for five and three different types of lightweight concretes and mortars respectively. 

The increase of the width, size and distribution of holes in the hollow bricks gave them more 

versatility and more options for optimization.  

Baig, 2008 studied the coupled effect of conduction-convection and conduction-convection-

radiation in FEM of a representative module of size 0.2x0.2x0.15m of a concrete hollow 

block. His thesis dissertation presented a complete study of the parameters affected by the 

accommodation of two and three modes of thermal transfer. The parameters that he chose to 

study were: different number of partitions in the width direction to create several cavities 

while maintaining same void ratio, staggering the cavities, filling cavities with insulation, and 

different values of emissivities for the conduction-convection-radiation scenario. He assessed 

in his analysis the effect of the above varying parameters on the flow pattern and temperature 

distribution in the centerline of the modeled hollow blocks, the velocity in the direction of 

thermal gradient, and the heat transfer rate across the hollow blocks. He also studied the 

effect of radiation in general on the heat transfer rate of the different hollow blocks and the 
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effect of the variation of radiation with wall emissivity on the convection mode in the 

conduction-convection-radiation scenario. He concluded that in the conduction-convection 

scenario: increasing the cavities to two significantly decreased the total heat flux by 21.1% 

while three cavities only decreased the flux by 28.3%. The effect of six cavities yielded a heat 

flux equivalent to that obtained by insulation-filled core hollow blocks. On the other hand, 

when radiation was included, the total heat transfer rate increased by 30%, which 

demonstrates the importance of its computation. Also, changing the emissivity from e=1 to 

e=0.1 reduced the R-value from 41% to 7%. Similarly to J. J. del Coz Diaz, et al. April, 2008, 

he concluded also that reducing the thickness of the conductive shell—within safe limits—

reduced thermal bridges and conduction heat leaks. And, increasing the aspect ratio of 

cavities reduces significantly the effect of the convection mode. 

Sun and Fang 2009 employed 3-D numerical model for the thermal analysis of 

0.240x0.115x0.090m concrete hollow blocks of different 71 configurations maintaining a 

constant void fraction volume of 37.80%. The simulation aimed at estimating the equivalent 

thermal conductivity for three different scenarios: 1-conduction only (Kcond), 2-conuction-

convection (Kcond-conv), and 3- conduction-convection-radiation (Ktot). The configuration of 

the blocks changed by adding enclosures parallel and perpendicular to the direction of heat 

transfer (width and length respectively) and staggered enclosures. They found out that the 

increase in number of enclosures in the direction of heat transfer decreases significantly the 

equivalent total K-value (Ktot). On the contrary, the increase in number of enclosures in the 

direction perpendicular to the heat transfer has an adverse effect on the Ktot. The contribution 

of the k-value relevant to each mode was calculated and discussed. The conduction had the 

dominating contribution followed by the radiation in second place and the least contribution 

was done by convection. They concluded their research by indication than the equivalent 

thermal conductivity of hollow bricks depended largely on the interaction of the three modes 

of heat transfer. 

2.4 Ferrocement  

The past thirty years comprised extensive research on the ductile failure of ferrocement. The 

inclusion of narrowly spaced wire mesh works as lateral and longitudinal reinforcement to 

the confined mortar. This research utilizes the confinement effect of ferrocement in hollow 
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blocks subjected to compressive load. Therefore, it is only relevant to discuss in this section 

the confinement characteristics of ferrocement. 

2.4.1 Ferrocement confinement of concrete and EPS-Core under compression 

Johnston and Mattar 1976 studied the effects of the wire mesh type, geometry, orientation, 

and number on uni-axial tension and compression of ferrocement. They also provided an 

original study of assessing the confinement effect of a ferrocement hollow column confining 

a soft EPS core. The materials used were: expanded metal diamond grid with dimensions 

(EXMA), expanded metal diamond grid with dimensions (EXMB) and galvanized welded 

wire mesh (EWM). The expanded metal EXMA with steel strands in the shape of flat 

diamond grid with dimensions 29 mm X 13 mm and orientation 24 and 66 degrees with the 

direction of stress. The expanded metal EXMB with steel strands in the shape of flat diamond 

grid with dimensions 22 mm X 13 mm and orientation 31 and 59 degrees with the direction 

of stress. In addition to the galvanized welded wire mesh EWM had 13 mm square grid with 

wires parallel and perpendicular to the applied stress (0/90) or wires at 45 degrees to the 

applied stress (45/45). Two types of mortars were used; the mortar used in tension test had a 

cylinder compressive strength of 69 MPa while the mortar used in compression tests had a 

cylinder compressive strength of 38 MPa.  

The test program included tension and compression tests on ferrocement specimens. The uni-

axial tension tests comprised 914 mm long by 102 mm width by 13mm to 38 mm thickness 

specimens, lateral and axial strains were recorded by 20 mm foil strain gages. The uni-axial 

compression tests comprised twenty five specimens of dimensions 305mm X 102mmX 

102mm, half the specimens were solid mortars and the other half had polystyrene core of 

dimensions 305x64x64mm, lateral strains were recorded by 76 mm foil strain gages and 

average axial strain was recorded by means of 76 mm transducers.  

The parameters studied in the uni-axial tension tests were the type, orientation, and number of 

reinforcement mesh and the thickness of the specimens.  They reported that the thickness of 

the mortar did not play a significant role in uni-axial tensile tests since it was cracked long 

before reaching the ultimate failure of the section and did not contribute to load resistance.  

The authors recommended that for accounting for reinforcement steel in uni-axial tension, the 

effective area of steel should denote the effective area of steel per unit loaded width of the 
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section or per unit area of the finished surface of the specimen. The orientation of steel 

reinforcement in ferrocement is essential to its efficiency in resisting tensile stresses. The 

authors reported that based on the content of the used steel, the expanded metal was more 

economic and effective for uni-axial tensile load applications as it gave 75% more uni-axial 

tensile load resistance than that provided by welded mesh because of the steel content in the 

longitudinal direction of stresses was more in the former. However, welded wire mesh with 

its square openings provided consistent resistance to both uni-axial and bi-axial tensile 

stresses. Ferrocement made with expanded metal was characterized by higher stiffness, 

cracks were invisible and if existed would only appear before failure and would be very fine 

and closely spaced. On the other hand, ferrocement made with welded wire mesh were less 

stiff and developed cracks that were visible before the failure of specimens. The spacing and 

intensity of these cracks decreased when the specific surface of reinforcement was increased. 

The authors found that the strength of the reinforcing steel was not an important parameter 

and was not the governing factor in the crack spacing and deformation stiffness of 

ferrocement under uni-axial tension; the key parameters were the orientation of reinforcement 

and its material characteristics.  

The parameters they studied in the uni-axial compression tests were the type, orientation, and 

number of reinforcement mesh used in the absence and presence of polystyrene core. The 

distinguishing characteristic of ferrocement is its two-direction reinforcement which plays a 

major role in increasing the tri-axial confinement of the involved mortar.  The authors drew a 

very interesting analogy of ferrocement composite under uni-axial compression. The 

longitudinal reinforcement act as standard bars and the transverse one act as helical 

reinforcements to the columns of mortar in the ferrocement composite, this combination of 

reinforcement confined the included mortar column structure and exploited its tri-axial 

strength during compressive loading.  In ferrocement under compression, the mortar strength 

influenced deeply its strength, unlike in tension.  The authors found that welded wire mesh 

were superior to expanded wire mesh for reinforcing concrete under compression because of 

the lateral confinement provided by the transverse steel to the mortar. The load-carrying 

components in ferrocement under compression were: the mortar, longitudinal steel (resisted 

5%-14% of the load) and lateral steel (resisted 17%-42% of the load). The failure of 
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ferrocement under uni-axial compression was a complex phenomenon that was affected by 

various factors.  

On the other hand, the confinement behavior of ferrocement composite under compression 

was explored. They studied the behavior of solid and polystyrene core columns confined with 

ferrocement under compression and noticed that the higher the volume reinforcement of 

welded wire mesh in cored columns the higher the compressive strength, which was not the 

case for solid columns. The authors estimated the reinforcement volume at which 

compressive strength increased with adding more welded wire meshes was 192 kg/m3 and a 

threshold reinforcement volume of 272 kg/m3 at which the lateral confinement provided by 

the reinforcement ceased to be effective.  The explanation was that ferrocement composites 

failed under compression by mortar dilation outwards, which was restrained by the effect of 

lateral reinforcement. However, in soft cored columns, mortar dilated both inwards and 

outwards and the core was responsible in retraining the inward dilation and the reinforcement 

was responsible in restraining the outward dilation. At a certain extent after which the soft 

core was rendered ineffective in restraining inward dilation, the increase in reinforcement 

also was rendered ineffective and the specimen failed.  

Another remarkable finding by the authors was that in heavily reinforced cored ferrocement 

prisms, beneath the threshold reinforcement, the longitudinal welded steel contributed to 20% 

of the load-carrying capacity as compared to the 5%-14% in solid prism. They attributed this 

phenomenon to the failing core ability to restrain the mortar dilation. Also, they pointed out 

that the lateral steel carried a range from twice to six-times the load carried by longitudinal 

steel. They also related the behavior of cored ferrocement columns in failure and their 

response to the increased amount of reinforcement to the amount of confinable mortar in 

cored specimens. The confinable mortar in cored ferrocement columns was attributed to 80% 

while for solid cores was 88%. They suggested that the amount of reinforcement in 

ferrocement cored columns should be studied to balance between the amount of confinable 

mortar and the buckling strength of longitudinal reinforcement. They concluded that there 

was a limit strength to cored ferrocement composites and rendered the topic as volatile to 

many variables and fertile for future research. This phenomenon is very important to the 

study at hand. 



www.manaraa.com

34 

 

2.4.2 Ferrocement-confined aerated concrete blocks  

Memon, et al. 2006; 2007 utilized the advantages of ferrocement confinement by encasing an 

aerated concrete block in a high performance ferrocement box. They investigated the unit 

weight, ultimate compressive strength, flexural strength, water absorption, and failure mode 

of the sandwich block.  The materials used were OPC, ground granulated blast furnace slag 

(GGBFS), aluminum powder, wire mesh and super plasticizer. The aerated concrete 

ingredients were: binder to sand (passing through 600 µm sieve) ratio was 1:1, water ratio to 

dry mix was 0.23, aluminum powder ratio to dry mix was 0.1%, a super plasticizer to binder 

ratio of 0.55%, and the GGBFS replaced 50% of cement. The ferrocement mortar ingredients 

were: binder to sand ratio was 1:2, the binder to water ratio was enough to produce a flow 

value of 136+/-3% with a super plasticizer ratio of 0.2%, and the GGBFS replaced 50% of 

cement. Two types of wire meshes were used; square mesh of 1mm diameter and 12mm and 

hexagonal mesh of 0.5mm diameter and 18 mm x 14 mm wire spacing. The pouring 

procedures took effect on two days; on the first day, aerated concrete was poured in a mould 

that was 376 mm x 200 mm x 76 mm size. On the second day, the wire mesh was wrapped in 

a cage-like shape around the block and mortar was poured on it in a space of 12 mm 

implementing efficient vibration.  

The experimental program comprised 24 units of 400 mm x 200 mm x 100 mm ferrocement-

aerated blocks divided into nine batches two of which were one control batch cast only with 

aerated concrete and another cast with a 12 mm plain mortar encasing aerated concrete block. 

The design density of the aerated concrete block was 1200 kg/m3. Each batch contained three 

specimens and the varying parameter was the type and number of wire mesh layers. The 

produced sandwich composite had more compressive strength than the plain block. The 

authors noticed that the composite block made with square welded wire mesh ferrocement 

increased the compressive strength of plain aerated concrete block by 101% and that of 

mortar encased aerated composite by 43%. Also, ferrocement encasement made with square 

wire mesh gave 20% more compressive strength than that made with hexagonal wire mesh.   

In a parametric study, they noticed that the rate of strength enhancement falls by including 

more than one layer of square wire mesh in the ferrocement skin and suggested that one layer 

of square wire mesh in the ferrocement face was adequate. The failure pattern of the 

composite block was ductile and first crack appeared at about 60%-80% of the failure load, 
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unlike the mortar confined block which showed first crack at 90%-96% of the failure load 

and then collapsed suddenly. Failure was noticed by the initiation of fine cracks at the first 

crack load, which widened with the increase in the applied load. The final failure occurred 

due to cracks in the ferrocement skin. The ductile failure exhibited full composite action, the 

layer of ferrocement was cracked and sometimes chipped off but complete or sectional 

detachment of the ferrocement skin never occurred. On the other hand, the application of the 

ferrocement skin enhanced the physical characteristics of aerated concrete. The average water 

absorption of aerated concrete block was 16.72 and dropped to 3.79 with the encasement of 

the ferrocement skin. The density of the proposed sandwich block was 1600 kg/m3 with and 

compressive strength range of 15.5-20 MPa. 

 2.5 Durability of Concrete 

Ravindrarajah and Tuck, 1994 were the only researchers who conducted comprehensive 

durability tests on EPS mortar and concrete specimens, although their report was conclusive 

that EPS mortar showed signs of resistance to acid and salt attack, the signs of deterioration 

were not inclusively discussed. On the other hand, Babu and Babu 2003 showed that EPS 

concrete had good quality in terms of absorption values and very low chloride permeability. 

Therefore, it is assumed that EPS is resistant to acidic and salt attack but the mortar matrix 

may not be as resilient. This section discusses some deterioration characteristics of plain and 

reinforced mortars when subjected to sulfuric acid and sodium chloride salt attack. 

2.5.1 Sulphuric Acid Attack 

It is obvious that the research done on the durability assessment of ferrocement is rather 

limited, especially those involving subjecting ferrocement to acidic environments. Although 

it is quite an approximation, the research performed on mortars could be utilized to partially 

assess and predict the deterioration of ferrocement under abrasive and acidic service 

conditions. 

 Fattuhi and Hughes 1988 studied the effect of sulphuric acid on cement pastes and concrete 

samples. Their parametric study included varying the w/c ratio, cement content and 

specimen’s age. The experimental program comprised two series. Series I represented the 

paste mixes with varied w/c ratio between 0.26 and 0.417. Series II represented concrete and 

contained five mixes, four of which had varied w-cm ratio 0.4, 0.5, 0.6 and 0.7, the fifth mix 
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had w-cm ratio of 0.47. The authors prepared five 100 mm cubes, three for testing density 

and compressive strength of the concrete mixes and two for testing the effect of sulfuric acid 

for each condition under investigation. The test set up was formed of a flowing channel of 

2% concentration of sulphuric acid, worst case scenario, and an average pH value of 1.78. 

The acid concentration was checked regularly by means of Na(OH) of predetermined strength 

and depleted acid was  refilled to maintain the 2% concentration. Once a refill was done the 

channel was brushed of any debris. The test was run at 22 to 26 degree Celsius. The cubes 

were immersed in the channel at different ages between 1 and 30 days and were removed for 

periodic weighing, photographing and repairing. Prior to the weighing process Series I cubes 

were vigorously brushed under tap water to clean any debris while Series II was lightly 

brushed.  

The authors reported that for Series I, the age of cement pastes before acid immersion 

affected their weight loss. They reported that w-cm ratio of 0.471, cement paste cubes 

immersed in acid after 28 days of maturity suffered 75% less weight loss when compared the 

cubes immersed in acid at 7 days maturity. In addition, they attributed the weight loss to the 

brushing scheme of the surface. They noticed that 7-day mature cubes tend to cease losing 

weight after a four week immersion in the acidic solution when they were kept un-brushed.  

The authors attributed this cessation due to the formation of a thick whitish-yellowish layer of 

gypsum that reduced the permeability of acidic water. The weight loss exhibited by 7-day old 

brushed and un-brushed cubes after 48 day acid immersion 45.9% was and 26.3%  

respectively. The lower w-cm ratio, except for w/c = 0.26, the higher the weight loss. This is 

because lower w-cm produced higher content of calcium hydroxide which reacted with the 

sulfuric acid. On the other hand, the lower weight loss in cubes with higher w/c ratio was 

explained by the formation of a very thick layer of impermeable gypsum that was difficult to 

be removed. Cubes of 32 day maturity and acid immersion of 46 days recorded 50% and 

22.5% weight loss by cubes made with w-cm ratio 0.3 and 0.4 respectively. All cement paste 

cubes showed cracks after 24 days of acid immersion, some cubes were split and held 

together by the passive gypsum layer.  

On the other hand, the weight loss exhibited by the concrete cubes of Series II was slightly 

affected by the age, maturity, of the cubes prior to their 49 day immersion in the acidic 

channel. Also, the brushing scheme had little effect on the weight loss as the weight loss in 
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brushed cubes was 7% higher than the weight loss in un-brushed cubes. In addition, the 

weight loss exhibited by cubes made with lower w-cm ratio was higher than that exhibited by 

cubes made with higher w-cm ratio. They also reported that the weight loss of concrete cubes 

made with w-cm ratio of 0.4 was 25% which is  three times more than the 7.9%  weight loss 

exhibited by cubes made with w/c ratio of 0.7 after 49 days of acid immersion. They 

attributed this large gap to the fact that cubes made with lower w-cm ratio had more cement 

content to react with the sulfuric acid flow. The deterioration of the concrete cubes recorded 

after 27 days of immersion was characterized by surface erosion of the cement layer and the 

exposure of the aggregates. The authors concluded that, contrary to the conventional, 

concretes subjected to environments where sulphuric acid might exist should have low 

cement content. 

Sulphate attack also causes mortars and concrete to deteriorate.  Shannag 2008 investigated 

flexural strength of ferrocement plates subjected to sulfate environments.  The materials used 

were three types of galvanized woven wire mesh of 0.63 mm diameter and three different 

wire spacing 3.15 mm, 6.3 mm, and 12 mm. The mortar was prepared with the mix 

proportions 1:1:0.5:0.02 corresponding to OPC, sand, water and super plasticizer which 

yielded a compressive strength a 28-day compressive and tensile strengths of about 60 MPa, 

and 5 MPa, respectively. The test program comprised 54 specimens of size 300x75x12.5mm 

prepared with two and four layers of square wire mesh. The parametric study included 

varying the number of wire mesh layers, wire mesh spacing, and curing environments. After 

28 days, the ferrocement specimens were submerged for a year in three different solutions 

5% magnesium sulphate solution, 5% sodium sulphate solution or tap water.   

The author tested the specimens under flexure and reported the first crack load, ultimate load 

and load deflection value and the degree of mesh deterioration. He reported that the 

specimnes stored under tap water exhibited increase in flexural strength with the increase in 

the number of wire mesh layers and decrease in wire spacing. He explained this increase 

because more wire layers increased the volume fraction of reinforcement and increased the 

depth of mesh layer from the neutral axis which resulted in an increased moment arm and 

flexural strength. Further he used the specimens immersed under tap water as a reference for 

comparing the results of the other specimens against.  Shannag 2008 attributed the behaviour 

of ferrocement plates immersed in sodium sulfate solution to mainly the effeciency in their 
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preparation. He reported that ferrocement of 2 wire meshes and small, medium and large 

spacing exhibited an increase in flexural strength of 24%, 7%, and 20% respectively, which 

corresponded to an increase of 178%, and a decrease of 33% and 11% in energy absorption 

respectively. the author explained that the period was insuffeceint for sulphate reaction to 

take place because of the good quality of the mortar which was well compacted. On the other 

hand, spacimens with four layers of wire mesh were not as compacted and deterioration in 

flexural strength and energy absorption was noticed. He reported that ferrocement of 4 wire 

meshes and small, medium and large spacing exhibited a decrease in flexural strength of 

28%, 19%, and 3% respectively, which corresponded to a respective decrease 11%, 18%, and 

28%. The specimens immersed in magnesium sulphate solution showed similar trend but 

with more adverse effects because magnesium sulphate degrades hydrated calcium silicates, 

Ca(OH)2 and hydrated C3A while sodium sulphates degrades Ca(OH)2 and C3A only.  

2.5.2 Sodium Chloride Salt Attack 

Koniorczyk and Gawin, 2008; and Koniorczyk 2010 studied the damaging effect of salts on 

porous building materials such as cement bricks and mortars. There are two damaging effect 

of salts when present in the pore structure of porous building materials, namely, 1-corrosion 

and 2- salt crystallization. Corrosion is triggered by chlorides that exist in two forms; the first 

is free chlorides in the pore structure and is responsible for corrosion while the second is 

bound chloride. On the other hand, salt crystallization occurs in supersaturated salt solutions, 

as the one used in this research.  

Koniorczyk 2010 presented experimental analysis, mathematical derivations and numerical 

modeling of the damaging effect of salts on mortars when subjected to different scenarios 

such as salt solution, super saturated salt solution, wet-dry cycles, and hot-cold cycles. The 

experimental investigation comprised analyzing mortar specimens using Mercury Intrusion 

Porosimetry (MIP) which is a technique used to characterize the distribution of pore sizes in 

cement-based materials, and scanning electron microscopy (SEM), which observes the micro 

structural porosity including capillary pores. They tested 40x40x160mm mortar specimens to 

investigate the effect of salt precipitation in the gel pores of mortars on the mortars’ porosity.  

The specimens were cured for 30 days then specimens were dried and later saturated in NaCl 

solutions of concentrations: 0%, 15%, 20%, and 25% (kg of NaCl to Kg of water). The 

saturation process was done on three stages, firstly, 1/3 of the sample was covered with the 
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saline solution, secondly, 2/3 of the sample was covered and finally the whole specimen was 

submerged in the saline solution. The first and second stages lasted for 2 days while the third 

lasted for 30 days. The drying regimen was then followed by allowing the samples to dry in 

ambient temperature of 105 degrees Celsius. The fast drying allowed the evaporation of water 

and precipitation of salts. MIP and SEM tests were conducted on 1 cm3 specimens extracted 

from the surface zone of the mortars. 

The authors found that the amount of precipitated salt depended on the initial amount of salt 

in the saline solution. They found that in saline solutions with higher slat concentration, the 

macro-pores inside mortars were clogged and the mortars’ porosity decreased. Also, the 

diameter of the inner surface pores decreased at higher salt concentration owing to the same 

pore clogging phenomenon. The MIP analysis showed that at salt precipitation of 0% 

(control), 6.12%, 10.95%, and 12.88% the mortars porosity decreased from 23.72% (control) 

to 19.33%, 15.69%, 14.03% respectively. The authors formulated a mathematical derivation 

and a numerical model to simulate salt precipitation and water migration phenomena and the 

results from the simulation agreed well with experimental results. They simulated the 

capillary suction and migration of salt water inside the gel pores of mortars and found that, 

because water molecules are 3 to 5 times smaller than Na+ and Cl- molecules, salts 

precipitated in the gel pores and allowed water to migrate through the pores to the mortars’ 

surface—where higher concentrations of salt existed.  

Further, the authors used the numerical model to simulate the drying of three walls subjected 

to salt solution; the first was simulated considering the pore-clogging phenomenon (change in 

permeability). The second wall was subjected to the salt solution and the model accounted for 

a change in porosity (permeability) in addition to the effect of sorption isotherms, which 

assumes that as the concentration of soluble salts increase in the mortar pores, the higher is 

the water content at a certain relative humidity and thus the slower the drying process gets. 

On a side note, Spragg, et al. 2011, reported the delayed drying and weight-retaining 

phenomena of mortars soaked in cycles of 23% NaCl, 32% CaCl2, and 30% MgCl2 saline 

solutions in an extensive experimental investigation and demanded further research. The third 

wall was wetted with clear water and was used as a datum. The simulation period was set to 3 

years and the drying mechanism of water was monitored. The authors found that the moisture 

content of the second wall decreased by 1.95 kg/m2, which is 55% higher moisture content 
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than the 3.57 kg/m2 recorded for the control. They concluded that the effect of retaining 

moisture inside of the pores of mortars subjected to saline solutions was more dangerous and 

prominent than the effect of clogging pores with salts. The authors subjected the second wall 

to seasonal effect during drying and reported that the concentration of salts inside the walls 

remained constant and varied on the external surface of the walls which would result in 

efflorescence in the summer-spring seasons, when moisture content is at its lowest.  

Lubelli and de Rooij 2009 studied the deterioration of plasters and renders due to NaCl 

(halite) salt crystallization. They investigated the location and shape of halite crystals and 

discussed the corresponding deterioration. They prepared fire clay specimens of dimensions 

5x5x5 cm3 and added a plaster layer on it of approximately 2 cm thick. The specimens were 

sealed on lateral sides with epoxy-resin and left to dry in dried in an oven at 60 C until 

constant mass. The specimens were then left to reach room temperature and then were 

contaminated with 10% NaCl solution by capillary rise till the evaporation of 80% of the 

saline solution. Afterwards, rewetting procedure through capillary rise was repeated. To 

accelerate the drying cycles the specimens were dried in two different environments 8 h at 35 

C and 20% RH followed by16 h at 20 C and 65% RH. The test was terminated either when 

plaster was damaged or after five wet cycles.   

The authors used SEM in studying the salt crystallization of halite inside the plaster and 

found that the location of salts was directly determined by the moisture transport properties of 

the plastering layer. Also, the pore system of plasters was responsible of rate of 

crystallization and shape of halite. For example, thin whiskers of halite crystals were seen on 

fine porous plasters that had low moisture transport while regularly shaped bigger crystals 

were noticed on plasters that had large pores and high moisture transport. They reported that 

the type of damage due to salt crystallization was related to the location where salt crystals 

accumulated. Plasters that had high moisture transport and bigger pores had salt 

crystallization near the evaporation surface and were subject to loss of the plaster’s 

cohesions. On the other hand, salt accumulating plasters that are characterized by low 

permeability and smaller pore size had salt accumulation in deeper substrates and cracks 

initiated parallel to the evaporation surface.  

Research done concerning the corrosion of ferrocement is scarce, however Mansur, et al. 

2008, provided guidelines and analysis of different corrosion assessment and remedy 
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techniques of ferrocement. They researched three defense mechanisms, each one separately, 

in attempt to produce corrosion resistant ferrocement, the first was coating the steel mesh 

with corrosion inhibitor, the second was increasing the quality of cement mortar, and the third 

was coating the ferrocement composite with corrosion inhibitor. The aim was to devise the 

optimum procedure for corrosion delaying or inhibiting in ferrocement. A total of 65 

specimens with dimensions of 330 mm length, 100 mm width and 20 mm thickness each was 

reinforced with four welded wire mesh square grids of 12.7 mm spacing and 1 mm diameter 

were prepared. The specimens were divided into 13 groups of fives. A control mix (CM) was 

made cement content of 661 kg/m3, sand to cement ratio of two, w-cm ratio of 0.43 and a 

concrete cover of 5mm. The specimens were divided into three main groups: specimens that 

had direct protection to steel, improved matrix quality and ferrocement surface protection. 

Table 2.1 summarizes the parametric study conducted by Mansur, et al. 2008.  

Table 2.1: Summary of the accelerated corrosion test program (Mansur, et al. 2008) 

Type of protection Parameter Description 
Mortar 
Mixture 

Designation 

Direct protection to steel 
Corrosion inhibitor Prescribed dose CM+ 

Concrete cover 6mm CM 
3mm CM 

Quality of mix 

W/c ratio 0.35 0.35 
0.5 0.5 

Sand/cement ratio 1.5 1.5 
2.5 2.5 

Fly ash to cement  25% FA-25 
50% FA-50 

Silica fume to cement 10% SF-10 
Ferrocement surface protection Surface coating Elastomeric paint CM 

Two of each five specimens were kept under natural conditions, and the rest were subjected 

to accelerated corrosion by being exposed to wet-dry cycles of 3% NaCl solution. During the 

wetting cycles the specimens were kept immersed in an upright position in a galvanostatic 

cell with 3% NaCl solution. Electrical current was impressed through the embedded 

reinforcement (anode) by applying a fixed potential across it and a cathode.  The cathode was 

represented by the same type of wire mesh and equivalent surface area wrapped around the 

specimen. The drying cycles were achieved by pumping out the cell’s solution. The exposure 
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continued for 58 days and each wet cycle lasted for a day then followed by a drying cycle that 

lasted for 2.5 days. They evaluated the proposed protective schemes by assessing the 

maximum crack width, loss of steel, and deterioration of flexural strength that would result 

from the corrosion of embedded wire meshes.  

They reported that corrosion was noticed as early as 16 days into the experiment due to the 

development of expansive corrosion products around the wire mesh that caused in a pressure 

strong enough to crack the mortar.  Specimens made with 10% SF did not develop such early 

cracks. Corrosion cracks did not follow a consistent pattern but propagated with prolonged 

exposure and rust stains poured out of them. Comparing the cracks developed by all the 

specimens to the control one, the best protective scheme was using 10% silica fume, then 

surface coating followed by 25% FA that generated corresponding maximum crack width of 

0 mm, 0.02 and 0.02 mm. The lowest steel loss percentage was recorded by the SF specimens 

that lost 1% of the diameter of its steel, followed by stainless steel reinforcement and surface 

coating which lost a respective 2.5 and 3 %. The control specimen lost 8% and the specimens 

made with sand to cement ratio of 2.5 was the worst performance and lost 15.5%.  

Furthermore, Mansur, et al. 2008 reported that the accelerated corrosion test adversely 

affected both the strength and ductility of ferrocement. The failure pattern was sudden into 

two halves, unlike the more prolonged and distributed failure pattern displayed by the 

naturally preserved specimens. They reported that again 10% SF gave a 14.7 % strength loss, 

which was the least strength loss in all the groups. The control specimens lost 57% of its 

strength and the highest strength loss was recorded by specimens made with 2.5:1 sand to 

cement ratio which lost 69.7% of their strength. The authors concluded that the best corrosion 

protection schemes for ferrocement in decreasing order of performance were using 10% SF, 

surface coating, 25% FA, 50% FA, and deep mortar cover (5 mm or more). 

The work done by Almusallam and Yousef, 2006 presents one of the scarce studies on the 

effect of cyclic exposure and ponding of GFRP concretes in NaCl solution. They aimed at 

studying the long-term durability of GFRP reinforced beams under sustained load and 

subjected to various adverse conditions. The experimental program comprised 36 concrete 

beams of 100 X100X2000mm3 each reinforced with one GFRP bar of 10mm diameter. The 

beams were designed to sustain shear load without the extra support of stirrups and that the 
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sustained load would use only 20 to 25% of tensile strength of the GFRP bars. The bars were 

coated with high alkali cement paste at the middle (a distance 40 X40X700mm3) to increase 

the alkalinity content around of the bar and to facilitate the bar’s removal from concrete 

during testing. The materials used were concrete of 120-day average cylindrical compressive 

strength of 43 MPa, GFRP bars of tensile strength, maximum tensile strain and static 

modulus of elasticity corresponding to 743MPa and 0.0187 and 39 GPa.  

The test program comprised 36 beams tested in three different exposure conditions. The first 

exposure condition was continuous immersion in tap water at 40 degrees Celsius (T1), 12 

beams were tested, 6 loaded and 6 not loaded. The second exposure condition was continuous 

immersion in seawater at 40 degrees Celsius (T2), 12 beams were tested, 6 loaded and 6 not 

loaded. Finally, the third exposure condition was wet/dry cyclic immersion in seawater at 40 

degrees Celsius every two weeks (T3), 12 beams were tested, 6 loaded and 6 not loaded.  

Local seawater was brought from the Arabian Gulf to represent service conditions the eastern 

province of Saudi Arabia. Three strain gages were embedded in the middle portion of the 

beam for strain recording during testing; for each exposure condition 4 beams (2 loaded and 2 

unloaded) were tested at 4, 8, and 16 months. GFRP bars were extracted at the scheduled 

time of testing and tensile test was conducted on the bars.  

The authors reported that the GFRP bars embedded in unstressed and stressed beams 

subjected to continuous immersion of marine environment (saline ponding) lost 19.7% and 

47.9% respectively after the exposure of 16 months. On the other hand, GFRP bars embedded 

in unstressed and stressed beams subjected to wet/dry cyclic immersion of marine 

environment lost 21.8% and 55% respectively after the exposure of 16 months. The strength 

loss was mainly due to moisture exposure and little was the effect of chloride ion corrosion. 

This is because, GFRP bars embedded in unstressed and stressed beams subjected to 

continuous tap water immersion lost 16.3% and 47.1% respectively after the exposure of 16 

months. The authors prepared additional GFRP beams—same design and exposure 

program—and tested them for flexure after 8 months. The reduction in failure loads of the 

unstressed beams was 12.5, 26.4, and 20.8% for beams subjected to exposure T1, T2, and T3, 

respectively and the reduction in failure loads of the stressed beams was 30.6, 25.0, and 

33.3% for beams subjected to exposure T1, T2, and T3, respectively.   
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Further, they reported that the stressed and unstressed GFRP bars subjected to the three 

exposure conditions showed reduction in ductility as indicated by the load deflection curve. 

An important observation was that during testing the unstressed GFRP concrete beams kinks 

due to slippage of bars were observed at low rate of stress, after which the test continued until 

failure. The reduction in ductility as recorded by the reduction in deflection at ultimate load 

was 31.6% and 43.4% for stressed and unstressed beams subjected to T1 conditions 

respectively, was 32.9% and 46.1% for stressed and unstressed beams subjected to T2 

conditions respectively, and was 22.4% and 39.5% for stressed and unstressed beams 

subjected to T3 conditions respectively. The results reported by the  Almusallam and Al-

Salloum 2006 suggest that GFRP is severely affected by wet and dry cycles more than the 

effect of salts in the saline environment. 
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Chapter 3 

Experimental Program 

 

3.1 Introduction 

The experimental program was designed to investigate the mechanical characteristics of the 

lightweight mortar lightened with different dosages of expanded polystyrene (EPS) wastes 

and the viability of its application for producing EPS mortar hollow block and solid brick 

units of suitable mechanical, long-term and thermal characteristics to arid environments. The 

experimental program was divided into two phases, the first phase aimed at determining the 

mechanical and thermal properties of the expanded polystyrene mortar (EM). Hydraulic 

mortar was selected rather than concrete in this investigation to produce a lighter weight 

matrix. EPS was used as partial replacement of the sand in the mortar mixture. The varying 

parameter in this phase was the weight of EPS per cubic meter of the mixture. Five mixes 

were prepared with five dosages of EPS namely; 0 kg/m3 (control mix), 10, 15, 20 and 26 

kg/m3. Cubes of dimension 150x150x150 mm and cylinders of dimensions 150X300 mm 

were cast and tested to determine the uni-axial compressive strength, modulus of elasticity, 

stress-strain curves and splitting tensile strength of each mixture.  In the second phase, hollow 

blocks made of the EPS lightweight mortars were cast and tested for uni-axial compressive 

strength and cyclic exposure to abrasive environments. More variables were introduced in 

this phase, namely, the type of reinforcing mesh (plain without reinforcing mesh, wire mesh, 

and fiber mesh) in addition to the EPS dosage variation. Moreover, solid bricks were also 

tested for the variation of uni-axial compressive strength and thermal conductivity with EPS 

dosage. A total of forty five cubes, forty cylinders, hundred and forty hollow blocks and 

twenty five bricks were tested in this experimental program for mechanical properties, and 

environmental abrasion. The details of the experimental program are explained and discussed 

in the following sections of this chapter. 

3.2 Mix Design 

Four Expanded polystyrene Mortar (EM) mixes were designed in addition to the control mix. 

The mix design is based on partial replacement of fine aggregates (sand) by polystyrene 

crumbles known commercially as “Addipore 55” to produce lighter mortars. Table 3.1 shows 
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the proposed mix design. Silica fume was used in the mix as replacement of cement to 

enhance the properties of the mortar. High range water reducing admixture (HRWR) was 

used to improve the workability of the mixes and its proportion in kg/m3 of the mix was 

adjusted so that a slump of 20 cm was achieved. The designation given to the proposed mixes 

was based on the nominal weight in kilograms of “Addipore 55” used together with other 

constituents to produce a cubic meter of the mixture. Table 3.1 shows also the percentage 

reduction in weight of the hardened mix as compared to the control mix.  

Table 3.1: Mix proportions of the control mix and the expanded polystyrene mortar mixes 

Mix 
Designation 

Cement 
kg/m3 

Silica 
Fume 
kg/m3 

Sand 
kg/m3 

EPS 
kg/m3 

Water 
kg/m3 

HRWR 
kg/m3 

 
Theoretical 

Density 
kg/m3 

Dry 
Density 
Kg/m3 

Weight 
reduction

% 

C 455 45 1613 0 225 5 2343 2118 0 

EM10 455 45 1078 10.0 225 10 1822 1747 17.5 

EM15 455 45 833 15.1 225 7.5 1581 1497 29.3 

EM20 455 45 605 20.4 225 6.25 1357 1257 40.6 

EM26 455 45 408 26.2 225 10 1169 988 53.3 

 

3.3 Test Specimens 

The test program comprise 45 cubes of size 150 mm, 40 cylinders of 150 mm diameter and 

300 mm height, 25 bricks of dimensions 235x115x65mm and 140 hollow blocks of 

dimensions 200x200x400mm with two cylindrical holes each of 125mm in diameter. For the 

EPS hollow blocks, three types of blocks were designated for each of the four mixes and the 

control according to the type of reinforcement in the block. These types are: plain, steel wire 

mesh reinforced and fiber mesh reinforced (Table 3.2).  

Table 3.2: Designations for the three types of blocks and bricks 

Type of 
Reinforcement 

Mix Designation 
 C EM10 EM15 EM20 EM26 

Plain (blocks) CBP EMBP10 EMBP15 EMBP20 EMBP26 

Wire Mesh (blocks) CBW EMBW10 EMBW15 EMBW20 EMBW26 

Polypropylene Mesh 
(blocks) 

CBF EMBF10 EMBF15 EMBF20 EMBF26 

Plain (bricks) CBR EMBR10 EMBR15 EMBR20 EMBR26 
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Where C: control mix, EM10: mix with 10 kg EPS content, EM15: mix with 15 kg EPS 

content, EM20: mix with 20 kg EPS content, EM26: mix with 26 kg EPS content, B: block, 

P: plain blocks (no reinforcement), W: wire mesh reinforced blocks, F: GFRP mesh 

reinforced blocks and BR: brick. 

Three main characteristics were determined: 1-mechanical, 2- durability/serviceability and 3- 

thermal conductivity. The mechanical tests performed are compression testing, modulus of 

elasticity, stress-strain measurement and splitting tensile strength. The experimental program 

along with the samples sizes and numbers and the testing machines are summarized in Tables 

3.3 and 3.4. Tests are conducted in the Materials Laboratory and Structural Laboratory of the 

American University in Cairo. 
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Table 3.3: Summary of the conducted mechanical and thermal tests, specimen type and 

sample size 

Characteristics 
assessed Test 

Testing 
Machine/set 

up 
Specimen Sample size 

Mechanical 
Properties 

Compressive 
strength 

Universal 
Testing 

Machine 
(UTM) and 
Test Frame 

(TF) 

Cubes (150 mm) 

9 cubes per 
mix 3 after 7, 

14 and 28 
days 

Cylinders 
(150x300 mm) 

3 cylinders 
per mix after 

28 days 

Hollow blocks 
(200x200x400mm) 

3 to 4 blocks 
per mix for 
each block 

type after 28 
days 

Bricks 
(65x115x235mm) 

3 bricks per 
mix after 28 

days 

Static Modulus 
of Elasticity 

(E) 

Universal 
Testing 

Machine 
(UTM) 

Cylinders 
(150x300mm) 

2 cylinders 
per mix after 

28 days 

Stress-strain 
Curve 

 
MTS Cylinders 

(150x300mm) 

3 cylinders 
per mix after 

28 days 

Splitting 
Tensile 
Strength 

Universal 
Testing 

Machine 
(UTM) 

Cylinders 
(150x300mm) 

3 cylinders 
per mix after 

28 days 

Coefficient of 
Thermal 

Conductivity 

Hot wire 
method 

Unitherm TM. 
Model 3141 

Bricks 
(65x115x235mm) 

2 bricks per 
mix after 28 

days 
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Table 3.4: Summary of the conducted durability tests, specimen type and sample size 

Characteristics 
Assessed 

Test 
Description 

Cycle 
description 

Specimen Sample 
Size 

Durability/Serviceability 
Properties 

48-hr water 
absorption 

48 hours of 
immersion in 
water and 48 
hrs drying in 

room 
temperature 

and 
atmosphere. 
A sole cycle. 

Hollow blocks 
(200x200x400mm) 

2  blocks 
per mix 
after 28 

days 

Cyclic 
ponding in 

super 
saturated 
sodium 
chloride 

(NaCl) salt 
solution. 

7 days in 
brine pond 
and 7 days 
drying in 

room 
temperature 

and 
atmosphere. 
A total of 4 

cycles 

Hollow blocks 
(200x200x400mm) 

2  blocks 
per mix 
after 28 

days 

Cyclic 
ponding in 
5% sulfuric 

acid (H2SO4) 
solution. 

4 days in 
acidic pond 
and 3 days 
drying in 

room 
temperature 

and 
atmosphere. 
A total of 4 

cycles 

Hollow blocks 
(200x200x400mm) 

2  blocks 
per mix 
after 28 

days 

3.4 Material Properties 

3.4.1 Cement 

Ordinary Portland Type I cement was used in the current research. The chemical composition 

of the cement is shown in Table 3.5. Typical results of cement testing according to the 

manufacturer’s specifications and in accordance with ASTM C187-86, ASTM C191-82, 

ASTM C204-84, ASTM C150-68 and ASTM C109-88 are shown in Table 3.6. The weight of 

cement was kept constant during the research program at 445 kg/m3. The average cement 

fineness and specific gravity was 330 m2/kg and 3.15 respectively. 
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3.4.2 Fine Aggregate (Sand) 

Natural siliceous sand was used as fine aggregate throughout the current research. The fine 

aggregates used were obtained from the new Cairo district. The gradation of fine aggregates 

is presented in Table 3.7 and Figure 3.1. A summary of the characteristics of fine aggregates 

is presented in Table 3.8. The selected sand was characterized by its coarse particles, high 

fineness modulus and low percentage of particles finer than sieve No. 200 which resulted in 

its low absorption. The amount of sand varied in the five mixes in accordance to the amount 

of added “Addipore 55’’. 

Table 3.5 Chemical composition of ordinary Portland cement as obtained from manufacturer 
(Torah) 

Constituents Concentration in Weight (%) 
Silica as Si O2 19.8 
Alumina as AL2 O3 5.6 
Iron as Fe O3 2.4 
Potassium as k2 O 0.58 
Calcium as Ca O 65.9 
Sodium as Na2 O 0.29 
Sulphur as SO3 2.8 
Loss in ignition 1.2 
Insoluble residue 0.4 
Free lime 0.9 
Lime Saturation Factor 100.4 
Lime Combination Factor 98.9 
Silica ratio 2.48 
Alumina ratio 2.33 
Tricalcium Cilicate (C3 S) 65.1 
Dicalcium cilicate (C2S) 7.6 
Tricalcium Aluminate (C3A) 10.8 
Tetracalcium Aluminate Ferrite (C4 AF) 7.3 
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Table 3.6: Typical results of cement testing as obtained from manufacturer (Torah) 

Test Name Test results 
(1) 

Test results 
(2) 

Test results 
(3) 

ASTM 
Standards 

Standard consistency 

ASTM C 187-86 
26% 26.5% 27% 

Between 

 26% and 33% 

Setting (initial) 

ASTM C 191-82 

Hrs    min. 

2        25 

Hrs       min. 

2         30 

Hrs     min. 

2       35 

Minimum 

1hr 

Setting (final) 

ASTM C 191-82 

Hrs    min. 

3        35 

Hrs       min. 

3           0 

Hrs    min.        

3        20 

Maximum 

10hrs 

Fineness (cm2/g) 

ASTM C 204-84 
3400 3250 3350 

Minimum 

2800 

Cube strength (N/mm2) 

ASTM C 109-88 

3 days: 22.7 

7 days: 29.0 

3 days: 23.0 

7 days: 29.2 

3 days: 22.0 

7 days: 29.6 

3 days:12.4 

7 days:19.3 

Table 3.7: the gradation of the fine aggregates 

Sieve No. (mm) Sieve Size (mm) Cumulative percentage passing 

No. 4 4.75 99.25 
No. 8 2.36 96.15 
No. 16 1.18 86.10 
No. 30 0.6 63.40 
No. 50 0.3 22.65 

No. 100 0.15 3.75 
No. 200 0.075 0.75 
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Figure 3.1: Sieve analysis results of the fine aggregate 

 
Table 3.8: The characteristics of fine aggregates 

Fineness modulus 3.28 
Specific gravity 2.6 
Absorption 0.81% 

 

3.4.3 Silica Fume 

To improve the strength of the mortar, condensed silica fume was used to partially substitute 

cement. Silica fume was obtained locally in 50 kg bags from the Egyptian Ferroalloys 

Company (EFACO). Based on the results of the previous research (Korany 1996) and (Abdel 

Naby 2006), the weight of silica fume was approximately 10% of the cement weight in all 

mixes. The chemical composition of silica fume as obtained from the manufacturer is given 

in Table 3.9. A constant 9.89% silica fume was used to partially substitute cement by weight 

in the expanded polystyrene matrix.  
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Table 3.9 Chemical composition of silica fume as obtained from the manufacturer (the 
Egyptian Ferroalloys Company “EFACO”) 

Contractual Limits (%) Element/Properties 
Min. 92% Amorphous Silicon Dioxide (SiO

2
 ) 

Max. 1% Carbon (C ) 
Max. 1.5% Iron Oxide (Fe

2
O

3
  ) 

Max. 1% Aluminum Oxide (AL
2
O

3
 ) 

Max. 0.75% Calcium Oxide (CaO   ) 
Max. 1% Magnesium Oxide (MgO  ) 
Max. 1.2% Potassium Oxide (K

2
O) 

Max. 0.8% Sodium Oxide (Na
2
O) 

Max. 0.05% Phosphorous Pent-oxide (P
2
O

5
) 

Max. 0.5% Sulphur Trioxide (SO
3
) 

Max. 0.1% Chloride (Cl) 
Max. 0.5% Moisture (when packed) 
Max.  2 % Loss on ignition 750◦ C 

Max.  3 % Loss on ignition 950◦ C 
Max.  2% Coarse particles ; > 45 µm ( No. 325 mesh ) 
5.5 – 7.5 PH – value ( fresh ) 

250 – 350   kg/m3 Bulk density ( when packed ) 

Min. 15 % Specific surface area ( m
2
 / g ) 

3.4.4 Expanded Polystyrene 

Low-density expanded and extruded recycled polystyrene was obtained commercially from 

the Chemicals for Modern Building International (CMBI) Group with the brand name 

“Addipore 55” which is a mix of crumbles and shreds of different size, density and color as 

shown in Figure 3.2. The following is the manufacturer published information about the 

product: 

Description: expanded polystyrene beads of non uniform shape (non spherical). 

Size: the minimum size is 2.38 mm and the maximum size is 19 mm 

Specific Weight: 20 - 22 kg/m3 

Water Absorption: 2.7 % 
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Gradation analysis was done on three randomly selected “Addipore 55” bags. The average of 

the percentage of “Addipore 55” particles retained on various sieve sizes is presented in 

Table 3.10 and Figures 3.2 a, 3.2 b, and 3.3. The table also illustrates the percentage 

prevailing of each “Addipore 55” particle shape. 

Table 3.10: Average “Addipore 55” gradation as taken from a sample of three bags 

Seive size (mm) Percent 
Retained % Flakes % Crumbles % Twirls 

19.05 0.87% 3.57% 69.80% 26.63% 
12.7 19.60% 35.14% 43.56% 21.29% 
9.52 20.93% 46.48% 31.25% 22.27% 
4.75 23.36% 34.27% 46.82% 18.90% 
2.38 19.71% 11.83% 77.82% 10.35% 

dust * 15.53% dust * dust * dust * 
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Figure 3.3: gradation of the “Addipore” samples 

  

Figure 3.2 a: EPS particles of different shapes 
and color 

Figure 3.2 b: EPS as they occupy 1000 cc 
cylinder in proportion of gradation 
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3.4.5 High Range Water Reducing Admixture (HRWR) 

High range water reducing admixture (HRWR) was used to improve the workability of the 

mortar mixes. The commercial name of the admixture is “Sikament 163M” and was obtained 

from Sika industries. It is a chloride-free super plasticizer with a synthetic type dispersion 

base and density of 1.200 ± 0.005 kg/l in 20 degrees Celsius. According to the manufacturer, 

Sikament 163 M induces up to 3% air bubbles in concrete when it is used. The formed air 

bubbles were of a defined spherical shape and were distributed both in the mortar matrix as 

well as the surface of the prepared specimens as illustrated in Figure 3.4. The admixture 

dosage ranged between 1.5% and 2.5% of the weight of the cementitious materials. The 

optimum dosage, Table 3.1, was the one that produced flowable mix and facilitated the 

casting process of the blocks. 

High range water reducing admixture (HRWR) was proportioned in kg/m3 of the mix to 

achieve a slump of 20 cm. However, Table 3.1 shows that there was not a specific trend of 

increase or decrease of HRWR with EPS content in the mix. This is because the HRWR 

varied according to the following factors: 1-quantity and size distribution of EPS aggregates 

(and also sand content), 2-ease of casting EPS mortar in narrow spaces in reinforced hollow 

blocks, 3- time taken to cast the hollow blocks through which the mix should maintain its 

workability and not harden. 

      
 (a) (b) 
Figure 3.4: the shape and distribution of the HRWR induced air bubbles in the mortar matrix 

appear on the surface of (a) grinded cube cross section and (b) on the block’s surface    

3.4.6  Block Reinforcement 

a) Wire Mesh Reinforcement 

Galvanized wire mesh is used for reinforcing the thin webs of the hollow expanded 

polystyrene mortar blocks and the control ones. The diameter and spacing of the wire mesh 
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are presented in Table 3.11. The yield and ultimate strengths of the wire mesh tested by 

Gaafar, 2004, who did previous research on the same type of wire mesh in previous research, 

are presented in Table 3.12. Values of minimum yield strength and effective modulus of 

elasticity of the welded wire mesh as obtained from ACI 549.1R-93 guide for the design, 

construction, and repair of ferrocement are also included in Table 3.11  

Table 3.11: Specifications of Galvanized wire mesh as obtained from Gaafar, 2004. 

Galvanized Wire Mesh Data 
Wire spacing 12.7 mm X 12.7 mm 
Wire diameter 0.8 mm 
Yield Stress  (Gaafar, 2004) 490 MPa 
Ultimate Strength (Gaafar, 2004) 570 MPa 
Minimum Yield Strength (ACI 549.1R-93) 450 MPa 
Minimum Effective Modulus of Elasticity (longitudinal) (ACI 
549.1R-93) 200 GPa 

Minimum Effective Modulus of Elasticity (transverse) (ACI 
549.1R-93) 200 GPa 

 

b) Fiber Mesh Reinforcement  

Alkali resistant fiber glass mesh was used for reinforcing walls of the EPS hollow blocks and 

the control ones. The GFRP mesh was imported from Italy by a local distributor. The 

specifications of the fiber mesh as obtained from the manufacturer are given in Table 3.12.  

Table 3.12: Specifications of Fiber glass mesh as obtained from the Manufacturer (GEOX) 

Composition 
Fiberglass Approx. 84% 

Alkali resistant finish Approx. 16% 
Weight 

SP 04/02/12 (ISO 3374) 
Raw mesh 75 g/m2 +/- 5% 

Finished mesh 90 g/m2 +/- 5% 
Mesh width (SP 04/02/12) Measured between yarn 

midpoints 
Approx. 4X5 mm 

Tensile Strength 
Warp Average value 1450 N/5 

cm Weft Average value 1550 N/5 
cm Elongation Warp and Weft 4.5 % +/-  1 

 

3.5 Specimen Preparation 

3.5.1 Casting and Curing Conditions of the EPS Mortar (EM) Specimens 

The OPC, silica and sand were given a dry rotation in the planetary drum mixer. The HRWR 

was added to the mixing water and then added to the dry mix in the mixer. A homogeneous 
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mortar was reached before adding the “Addipore 55” to mixer while rotating for several 

minutes (3 to 5 minutes). Because the EPS particles tend to float, mixing was done on stages 

each comprised hand stirring and mixing till homogeneity was reached as shown in Figure 

3.5. The average slump obtained was 200 mm as illustrated in Figure 3.6. 

 

Figure 3.5: A shiny dark gray mix indicated good homogeneity and workability 
 

 
Figure 3.6: HRWR enhanced workability up to a 200 mm slump 

The homogenous mix was then poured in moulds placed on the vibrating table which is 

turned on maximum vibration. The vibrating table was used to get rid of the air bubbles 

formed due to the addition of the HRWR. The EM specimens were removed from moulds 

after 48 hours and cured in the curing room till tested. 

3.5.2 Casting and Curing Conditions of EPS Mortar Hollow Blocks (EPS MU) 

The moulds were specially designed and manufactured. A set of 12 moulds were 

manufactured of 2 mm thick steel and had internal dimensions of 200x400x200mm. Wire and 
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fiber meshes were formed into cages and loops respectively of dimensions 175x375x190mm.  

PVC pipes were cut into pieces of 250 mm length. 

3.5.2.1 Wire Reinforced Blocks 

The wire mesh and the PVC pipes were secured in place inside the mould as shown in Figure 

3.7 and the inside of the moulds as well as the PVC pipes were covered with oil. The moulds 

were placed on the vibrating table. The EPS mortar was poured to fill the mould. The 

vibrating table was operated. An EPS mortar cover of at least 200 mm was ensured during 

casting. The PVC pipes were kept in place for 2 hours then removed as shown in Figure 3.8. 

The excess EPS mortar was removed and the surface was leveled, Figure 39. 

  
Figure 3.7: The wire reinforcement 

arrangement inside the block before casting 
Figure 3.8:  The blocks after casting the EPS 
mortar and before removing the PVC pipes 

 

 
Figure 3.9:  The blocks after removing the PVC pipes and leveling the surface  

3.5.2.2 Fiber reinforced bricks 

Due to the nature of the fiber mesh fabrics, the fiber mesh were wrapped around specially 

fabricated steel wire cage to form a hoop of dimensions 175x375x190mm as shown in Figure 

3.10. The fiber loop was then stripped off the steel cage. The casting procedure was the same 
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as for wire reinforced blocks with the steel wire replaced by the fiber mesh hoop. The fiber 

mesh was maintained in place manually and by the wooden spacers likewise the steel mesh. 

 
Figure 3.10:  A schematic of the fiberglass hoop used to reinforce the blocks 

 

3.5.2.3 Plain Blocks 

The same moulds and casting procedure was used to cast the plain blocks but without placing 

any reinforcement in the block. 

All types of blocks were removed from moulds after 48 hours and were cured in the curing 

room for 28 day then were removed to dry freely in the laboratory conditions before testing. 

3.6 Test Program 

Three types of tests are performed, mechanical tests, durability tests and thermal conductivity 

tests. The test specimens shape and number are presented in Tables 3.3 and 3.4. The 

mechanical tests are conducted first on EPS mortar cubes and cylinders and comprise 

compressive strength, static modulus of elasticity, stress-strain curve plotting and split tensile 

tests. Also failure pattern is reported and analyzed. These tests aimed at exploring the 

mechanical properties of the EPS mortar and deciphering its behavior as a material. The 

second batch of mechanical tests is done for assessing the compressive strength  of  single 

units of hollow blocks and bricks. The main aim is to test which batches of blocks and bricks 

comply with the ASTM and Egyptian Standards. Also, the compressive strength and failure 

pattern of the hollow blocks and bricks will be elaborated on in the light of obtained 

knowledge of the mechanical characteristics of the EPS mortars.  
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The durability tests are conducted solely on the hollow blocks and comprise wet-dry cycles of 

salt and acid exposures. The weight and strength loss will be monitored. The main aim is to 

determine the serviceability conditions of the proposed EPS mortar hollow blocks. Finally the 

thermal conductivity of the control and EPS mortar bricks is measured to be used later in 

developing the thermal model that estimates the equivalent thermal conductivity of all hollow 

blocks. This section explains the tests done in details.

3.6.1 Mechanical Tests 

3.6.1.1 Compressive Strength 

a) The cubes were tested for compressive strength after 7, 14 and 28 days under ELE 

Universal Testing Machine (UTM) of compressive loading capacity of 1000 KN at a 

loading rate of 8 KN/second as shown in Figure 3.11. The test complied with the British 

standards BS 8110. The universal testing machine is a non-automatic concrete 

compression/tension machine. The upper and lower platens have equal diameters of 220 

mm and are assumed to be rigid. The boundary conditions of loading are friction where 

the loading platen and the cubes are in full contact without any lubricating or damping 

surface in-between. The compressive strength development with time and the 28-day 

compressive strength were determined for each mix, forty five cubes were tested, see 

Table 3.4. The results obtained from different mixes were compared to determine the 

effect different dosage of ‘Addipore” on the mix relative to the control mix. The effect of 

EPS on the failure mode of the specimens was examined.  
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Figure 3.11: Universal testing machine testing cube under compression 
 

b) The compressive strength of the cylinders of the samples containing EPS was determined 

using MTS universal testing machine while the control samples were tested using the 

ELE universal testing machine due to the capacity limitation of the MTS machine. The 

surface of the cylinders specimens was leveled by means of glass sheet immediately after 

casting to ensure a leveled surface and complete contact. Test was done in accordance 

with ASTM C39. The boundary conditions were frictional and the loading platens were 

assumed to be rigid. 

c) The compressive strength of the EPS mortar hollow blocks was determined using the 

ELE universal testing machine as shown in Figure 3.12. The boundary conditions of the 

universal testing machine were frictionless and the loading platens were assumed rigid. 

Friction-reducing loading platens were obtained by applying soft-capping and rubber 

pad. The surface finish of the block was rough as shown in Figure 3.13. As a result, soft 

capping was implemented during testing as illustrated in Figures 3.14. The polymer 

grout cap was made out of modified mortar. Latex based bonding agent commercially 

known as ‘Addibond 65’ was added to replace 1/3 of the mixing water of the mortar mix 

of proportions 1:1 fine sand to cement and w/c ratio of 0.35. Accelerating agent obtained 

commercially known as ‘Sika Rapid’ was used to accelerate the process of cap hardening 
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and strength gaining. Friction-reducing systems were applied to the block by means of 

soft rubber cap of 20 mm thickness and dimensions of 250 mm X 450 mm. The blocks 

were tested under compression up to failure and the cracking during the test were 

visually detected. The effect of capping ensured that the stresses are uniformly 

distributed over the surface area of the hollow block. However, capping exerted some 

lateral confinement to the lateral dilation of the loaded area of the hollow block. It was 

noticed that capped specimens exhibited inclined cracks which indicate ductility but 

uncapped specimens exhibited more spalls and lateral dilation of the upper portion of the 

hollow block—underneath the loading platen. This is explained in details in Chapter 4. 

 
Figure 3.12: Test setup for the EPS mortar hollow blocks 

  

Figure 3.13: EPS Block before capping Figure 3.14: EPS Block after capping 
 

  d) The compressive strength of the EPS solid bricks was determined using ELE Universal 

testing machine after 28 days of wet curing. The boundary conditions were frictionless 

system and rigid steel platens. The frictionless system was obtained by using rubber pad 

between the loading platen and the test specimen.  
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3.6.1.2 Stress-Strain Relationship and Static Modulus of Elasticity 

The stress-strain relationship was determined for the mortar using the cylindrical specimens. 

The MTS was used to test all EPS mortar cylindrical specimens to ensure that the strains 

resulting from the ductility of the mixes were properly registered. The MTS had a 

compressive capacity of 500 KN and was connected to a data acquisition system in the form 

of a PC. The test was strain-controlled, conducted at a constant strain pace, and was 

terminated by the collapse of the cylinder; therefore, the post-peak stress-strain relationship 

was determined.  Some of the cylinders were capped while others were just grinded to ensure 

full contact with the loading head. Soft capping was done by latex mortar and not sulfur 

because the latter requires to be cast by heating it above 100 degrees Celsius which is not 

suitable for EPS particles that is known to shrink at about 70 to 100 degrees Celsius. 

Accordingly, sulfur capping would have altered the EPS mortar properties at the top and 

bottom of the test specimens. Capped specimens suffered from inclined cracks while grinded 

specimens exhibited more spalling and lateral dilation. The boundary conditions were 

frictional and the loading platens were assumed to be rigid. The test setup is shown in Figure 

3.15. A total of forty cylinders were tested, refer to Table 3.4.  The stress-strain relationship 

was determined directly from the readings of the data acquisition system attached to the MTS 

universal testing machine. 

 
Figure 3.15: Test setup for the determination of the stress-strain relationship 

 

The obtained stress-strain relationship from the MTS tests showed some initial slippage 

due to initial deformation of the specimen under the loading head. The stress-strain 

relationship of the control cylinders was also determined using different test arrangements 
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using compressometer. Due to limitation of the capacity of the MTS, The stress-strain 

relationship of control mix was determined only by using this test arrangement. 

The compressometer was used also to accurately measure the static modulus of elasticity 

of the control and all EPS mortar mixes due to limitations that are explained in detail in 

Chapter 4. The cylinders were fitted with a compressometer accessory for determining the 

stress-strain relationship and the static modulus of elasticity according to ASTM C 469-02. 

The compressometer consisted of two yokes that form a gage distance of 150 mm as 

shown in Figure 3.16. The change in the length, shortening, was determined from the 

reading of the dial gage fitted between the two yoke as shown in Figure 3.16.   

 
Figure 3.16: The test cylinder fitted with the compressometer 

The cylindrical test specimens were loaded in compression using the ELE universal testing 

machine. The loading rate is maintained at minimum rate by gently tapping the loading lever. 

Strain measurements were obtained at increments of 10 KN for the control, EM10 and EM15 

specimens till failure. The EM20 specimens’ strain measurements were obtained at 

increments of 5 KN and the EM26 at 2 KN. The post peak stress-strain values of the control 

cylinders were not possible to measure due to limitations in instrumentation as this test is 

load controlled.  

3.6.1.3 Splitting Tensile Strength 

The ELE universal testing machine was used to determine the splitting tensile strength in 

accordance with ASTM C 496-96 as shown in Figure 3.17. A regression relation was 

developed to correlate the splitting tensile strength of each mix to its compressive strength as 

will be explained in Chapter 4. 
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Figure 3.17: Test setup for the Splitting tensile strength tests 

3.6.2 Durability Assessment 

The set of experiments adopted to assess the durability of the proposed EPS mortar blocks are 

presented in this section. The importance of the tests, measurements obtained from each test, 

as well as deterioration appraisal is also highlighted. The specimens tested are the different 

types and weights of EPS hollow blocks as illustrated in Table 3.4. The EPS hollow blocks 

are composite building units and the evaluation of its physical performance is based on the 

interaction of the blocks’ components when subjected to a certain environmental aggression. 

It is merely unrepresentative to assess the deterioration of each of its components individually 

because the extent of the deterioration of one of its components when subjected to a certain 

aggression might be slowed down when another component is introduced, or vice versa. 

Also, the physical evaluation available in some of the standards, such as the Egyptian 

standards and ASTM, state the acceptable performance of the tested unit rather than that of 

the constituent material.  

3.6.2.1 Absorption 

Water absorption is an indirect and fast method to determine the permeability of materials. It 

is a well known parameter to indicate the durability and serviceability of concrete masonry 

units as indicated in ASTM-C90 and C129. The importance of assessing the absorption of 

hollow blocks is to consider their susceptibility to deleterious material migration inside the 
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pores. Deleterious material transported by the absorbed water varies from mild/aggressive 

salt solutions to mild/aggressive acids which react with the hydration products especially the 

portlandite (Ca (OH) 2).  

Also, an immediate outcome of knowing the absorption percent of the EPS hollow blocks is 

to assess the water cement ratio and amount of water necessary for the joint mortar, render 

mortar and pre-wetting procedures respectively. 

The absorption test was conducted on the control and EPS mortar hollow block specimens 

according to the guidelines provided by ASTM C642, but with some deviation. The dry mass 

of the hollow blocks was measured for blocks that were stacked in dry room conditions. The 

provisions of ASTM C642 require the dry mass to be oven dry mass after subjecting 

specimens to 100 or 110 degrees Celsius for 24 hours. This procedure was not followed 

because EPS wastes shrink and evaporate at about 70 degrees Celsius. Therefore, the 48-hour 

water absorption was calculated based on air-dry mass rather than oven-dry one. 

The blocks were weighed in their dry state then were immersed in fresh water for 48 hours 

then weighed wet. The difference between the weights of the block at the two conditions was 

calculated and hence the percent absorption determined.  

3.6.2.2 Acid/Sulphate Attack 

One of the most common and detrimental chemical attack is caused by sulfate salts and acids 

(ACI 201.2R). It is rather rare that acids would be poured on the EM blocks, so the exposure 

would take place in the presence of an acidic solution. Sulphuric acid is not abundant 

naturally and exists only in a polluted or aggressive environment.  Sulphurous gases resulting 

from fuel combustion react with moisture and form sulphuric acid (ACI 201.2R). Some types 

of soils such as peat, alum and clay contain iron sulfide (pyrite) that form sulfuric acid upon 

oxidation (ACI 201.2R). The deterioration of concrete due to acid attack can be achieved by 

using any kind of acid. The ACI 201.2R committee assessed that a PH level below 3 forms an 

aggressive acidic environment towards concrete. A detrimental acidic exposure is a 

combination of a PH level lower than 3 and in the form of ponding exposure (ACI 201.2R).  

Selecting sulfuric acid to simulate an aggressive chemical attack is mainly because of two 

major reasons:1) it has a rapid chemical attack on concrete at ambient temperature and 2) it 

causes a double action of acid attack and sulphate salt attack (ACI 201.2R). Acid exposure in 
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the form of ponding of the EPS and control hollow blocks was selected because it is an 

additional factor that accelerates the attack (ACI 201.2R). 

The blocks were immersed in 5% diluted sulfuric acid solution. Commercial sulphuric acid 

that contained impurities was bought from local chemical factories with concentration 98-

99% and was added to water to produce 5% diluted. Four cycles of wetting and drying were 

performed. Before the start of the experiment, the blocks were weighed to obtain their initial 

dry weight. In each cycle, the blocks were immersed in the acidic solution for 4 days, and 

then removed. The wet weighed was measured and the blocks were left to dry in lab 

conditions for 3 days. The dry weight was measured before the blocks were immersed in the 

acidic solution to start the next cycle. The total test took four weeks of dry and wet cycles. 

The PH of the acidic solution was checked to ensure an aggressive acidic environment using 

a PH digital reader in the AUC environmental engineering laboratory. The PH ranged 

between 0.6 and 0.8 which indicates strong acidic environment (Fattuhi and Hughes 1988). 

During testing, the percent weight loss due to leaching was registered. At the end of the test, 

the blocks were tested in compression under the universal testing machine to determine the 

percent strength loss. The apparent degradation of the blocks throughout the four cycles was 

observed and recorded.   

The effect of this aggressive environment on the blocks was evaluated in the form of: 

1. Percentage of the weight loss at the end of each cycle. (quantitative) 

2. The deterioration signs of the blocks at the end of each cycle as determined by visual 

inspection. (qualitative) 

3. Percentage of compressive strength loss at the end of the four cycles. (quantitative) 

3.6.2.3 Sea Water (Soluble Chloride) Attack  

By far, the chloride ingression in porous materials is the most complicated kind of 

deterioration because chloride ions affect the three components of the proposed EPS blocks: 

cement mortar, wire mesh and fiber mesh in a series of chemical and physical reactions that 

are responsible of the subsequent strength loss and aesthetic degradation.  

Salt attack is present in two ways according to ACI 201.2R, physical salt attack and soluble 

chloride attack. Physical salt attack occurs in the presence of salts that are precipitated over 

the surface and in the interior pores of concrete. It is present in soil, especially from ground 
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water. Also, building envelopes in coastal areas where they are subjected to sea water splash 

and airborne chloride ions would cause salt migration and deposition on the surface of the 

building envelope. Porous bricks are subject to efflorescence deterioration. Many brick faces 

and rendering layers (spatter dash) show this behavior (Lubelli and Rooij, 2009). Salts 

precipitated inside the pores of concrete cause the formation of crystallization pressure that 

result in the formation of cracks and efflorescence (Spragg et al, 2011). Deterioration induced 

by physical attack by sodium chloride resembles the deterioration induced by freeze-and-

thaw cycles (ACI 201.2R).  

The simulation of such attack is done by subjecting specimens to wet-and-dry cycles of saline 

attacks (Spragg et al, 2011) which is used in the present investigation. The test blocks were 

immersed in saturated saline solution of fine pure salt brought from saline lakes in Alexandria 

(El-Max Salines). Sodium chloride was selected to produce the saturated saline solution to 

serve both purposes: high alkalinity for fiber glass abrasion and passive film attack for steel 

corrosion.  

Four cycles of wetting and drying were performed. Before the start of the experiment, the 

blocks were weighed to obtain their initial dry weight. In each cycle, the blocks were 

immersed in brine for 7 days, and then removed. The wet weigh was measured and the blocks 

were left to dry in lab conditions for another 7 days. The dry weight was measured before the 

blocks were immersed in the brine to start the next cycle. The weights of blocks were 

registered to assess the salt water absorption. The total test took eight weeks of wet and dry 

cycles. The salinity of the brine was checked by making sure of the presence of salt particles 

precipitating in the bottom of the testing container as a sign of full saturation (super 

saturation). At the end of the test, the blocks were tested in compression under the universal 

testing machine to determine the percent strength loss. The blocks apparent degradation was 

assessed. 

The deterioration of the blocks was evaluated in terms of: 

1. The loss of aesthetics of the blocks due to efflorescence and rust stains 

2. The loss of water permeability due to chloride binding and precipitation 

3. The gain in hollow block mass due to chloride crystallization (precipitation)  
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4. The loss in compressive strength due to salt crystallization in mortars, wire mesh 

corrosion and fiber glass leaching  

3.6.3 Thermal Conductivity Assessment 

Thermal conductivity of the EPS mortar was determined using the hot wire method. The 

ASTM C1113 defines the function of the hot wire method as to assess the thermal 

conductivity (k-value) of non-carbonacious and dielectric refractories. The hot wire apparatus 

allows determining the k-value over a wide range of temperature starting from room 

temperature to 1500 degrees Celsius.  

3.6.3.1 Test Apparatus 

The test apparatus used was UNITHERM TM Model 3141, a hot wire type thermal tester 

produced by Anter Corporation, Pittsburgh, PA. USA. The test apparatus is illustrated in 

Figure 3.18. The measurements were transmitted and displayed in a readable format 

simultaneously by means of proprietary software stored on the data acquisition system, 

Figure 3.18. The tests took place in the Ceramic and Refractory Materials Laboratories at The 

Central Metallurgical Research & Development Institute (CRMDI).  

 
Figure 3.18: UNITHERM TM Model 3141 thermal conductivity tester 

3.6.3.2 Test Specimens 

The five mortar mixtures used in this research were tested for determining the coefficient of 

thermal conductivity (K). The two temperatures that resemble high and extreme noon time 

temperature in desert areas were selected to be 50 and 70 degrees Celsius. The average 

thermal conductivity of the specimens was measured at the two consecutive temperatures. 

The thermal tester was programmed to measure the average K-value at two temperature 

points in sequence and per a sole run.  
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Because of the limitation of the test apparatus size, the test specimens were in the form of 

brick shaped with dimensions 235x115x65 mm as shown in Figure 3.19. The average thermal 

conductivity (K) was measured of an assembly of the two bricks, stacked on top of each other 

in a column assembly, of the same mix to minimize the error that may be encountered due to 

deviations in the physical properties within the population of each mix such as weight, 

density, and EPS particle distribution. 

 
Figure 3.19: A schematic diagram of the tested specimens the thermocouples. 

3.6.3.3 Specimen Preparation 

The test specimens had to be prepared before being properly inserted in the thermal tester as 

follows: 

1. During the specimen casting process, the top and bottom surfaces of the bricks were 

accurately leveled by means of a trowel or a glass plate. 

2. Two bricks from each mix were prepared so that their surfaces are intact when they 

are put on top of each other; this was achieved by leveling the surface of the bricks by 

glass sheet immediately after casting the mixes in moulds. 

3. To house the thermocouples, grooves had to be chiseled in one of the two bricks. One 

groove ran on the surface of the brick along its length (235 mm long) while two other 

grooves ran across the width from mid-width to the edge (55mm in length). The 

positions of the grooves were traced by a marker as shown in Figure 3.20 a. The three 

grooves were manually chiseled using a threaded screw and a wooden hammer, due to 

the frailty of the EPS mortar, to a width of 5mm and depth of 3mm as shown in 

Figure 3.20 b. 

4. The powder resulted from the chiseling process was carefully maintained and stored 

in a Petri glass. The large debris resulted from the chiseling process were ground 

using a ceramic bowl and grinder and stored in the Petri glass as seen in Figure 3.20 c. 
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5. The grooved brick was placed in the thermal tester and the thermocouples were 

carefully and firmly inserted in the grooves as shown in Figure 3.20 d. 

6. The second brick was placed on top of the grooved brick and full contact was ensured 

between the thermocouples and the two bricks as shown in Figure 3.20 e. 

7. The lid of the thermal tester was firmly closed and the test commenced  

  
a) : Marked locations of the grooves b) : Engraving the grooves 

  

c) : Grounding the debris resulting from 
engraving the bricks into powder 

d) : Filling the grooves with the brick powder 

 

e) : The two-brick assembly inside the tester 

Figure 3.20: Procedures adopted for specimen preparation prior to test commencement 

3.6.3.4 Experimental procedures 

Steady state thermal testing was conducted on each sample size at the two different 

temperatures. The two brick assembly was positioned in the thermal tester and the test was 

adjusted to record and calculate the k-value at 50 and 70 degrees Celsius. The sample was 

heated to reach 50 degrees then the first k-value was calculated by the software when steady 

state (thermal equilibrium) was reached.  Afterwards, the sample was again heated to reach 
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70 degrees Celsius than the second k-value was calculated by the software when the steady 

state was reached.  All the processes were automated and were done one shot. Each steady 

state was reached in more or less 7 to 8 hours and each brick assembly took approximately 

one days for the k-value to be calculated by the thermal tester’s copy righted software 

registered on the data acquisition system—PC. After the termination of the test, a table and a 

plot were generated by the registered software that related the temperature at the steady state 

condition and the corresponding k-value.
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Chapter 4 

Results and Discussion 

4.1 General 

The experimental test results in terms of Mechanical properties of EPS Mortar and EPS 

blocks and bricks, the durability, and the thermal characteristics of the of the EPS mortar as 

determined from the experimental thermal tests of the EPS bricks are presented and discussed 

in this chapter. The thermal characteristics of the EPS hollow blocks are determined 

numerically using computer modeling and are presented and discussed in Chapter 5

4.2 Mechanical and Physical Properties of EPS Mortar 

4.2.1 Density of Hardened EPS Mortar 

The density of EPS mortar is the main parameter in this research. The change in the density 

of the EPS is derived mainly from partial substitution of sand with EPS particles. Table 4.1 

presents the average densities of 15 mortar cubes of dimension150x150x150mm of each mix. 

The table also shows the standard deviation of the population cast based on the assumption 

that the population follows a normal distribution as well as the percentage reduction in the 

density as a result of increasing the EPS weight/m3. 

Table 4.1: EPS content and corresponding density and density reduction for each mix 

Mix EPS Content 
(kg/m3) 

Average Density of 
the Test Cubes 

(kg/m3) 

Standard 
deviation 
(kg/m3) 

Density 
Reduction% 

Control 0 2138 45.9 0 

EM10 10 1726 72.7 19.3 
EM15 15.1 1553 64.1 27.4 
EM20 20.4 1268 37.8 40.4 
EM26 26.2 970 16.9 54.6 

As shown in Table 4.1, the inclusion of EPS wastes tremendously reduced the density of the 

mortar. The addition of 10 kg of EPS wastes reduced the mortar density from 2138 kg/m3 to 

1726 kg/m3, which represents a reduction of 19.3%. The highest density reduction was 

recorded by the inclusion of 26.2 kg of EPS wastes which reduced the density to 970 kg/m3 

or a reduction of 54.6%. The reduction is due to the fact that EPS aggregates are ultra-light
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and occupy large space; the average density of EPS particles is 22 kg/m3 with a maximum 

particle size of 19 mm.  

The EPS mortar density varied significantly within the batch as indicated by the standard 

deviation shown in Table 4.1. This variation could be attributed to the poor gradation and 

shape of the EPS particles in addition to the segregation of aggregates that was observed 

during mixing especially in the mix with the lowest EPS content. The phenomenon of 

segregation was slightly reduced by proportioning the amount of HRWR; moreover, constant 

mixing was always applied even during casting to ensure that all scoops of EPS mortar 

uniformly contained EPS particles and mortar matrix. The segregation problem and the 

proposed methods of its mitigation were reported in the literature by several investigators 

(Perry et al, 1991; Ravindrarajah and Tuck, 1997; Abdulkadir and Demirbog, 2009) as was 

mentioned in Chapter 2. It was noticed during the casting of the test samples that vibration 

made the matter worse because it randomly dispersed the EPS and sand aggregates according 

to weight and accordingly the EPS particles floated at the top as they are almost weightless 

even when coated with mortar. Accordingly, it was decided in this research program to use 

sequenced vibration and hand compaction, however, variability of test results sustained.  

It is also observed from the results presented in Table 4.1 that the variation in the density 

within the batch was reduced significantly with the increase in the EPS content. The 

explanation for this phenomenon is that the mix with high dosage was formed predominantly 

of EPS particles and by the time they got coated by the matrix, there was less cement mortar 

slurry to allow them to float and consequently more uniform mix was obtained. 

Figure 4.1 shows the effect of EPS content per kg of the mix on the reduction of the EPS 

mortar density. The test data was best fitted by a linear regression as follows: 

ρ = -44.3 EPSc + 2162.1 

Where “ρ” is the dry density in kg/m3 and “EPSc” is the content in kg of EPS in the mix. The 

regression equation shows that addition of one kg/m3 of EPS particles would decrease the 

density of the mortar matrix by 44.3 kg/m3. This graph helps in future applications where it 

allows future researchers to try different dosage range that would produce a different density 
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range. On the other hand, it explains the gap that will be seen later in the strength results 

between the control mix and the EM10 mix. 

 

ρ = -44.3 EPSc + 2162.1
R² = 0.9936
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Figure 4.1: Relationship between EPS content in kg and EPS mortar density in kg/m3 

4.2.2 Compressive Strength of EPS Mortar 

The most important mechanical property of proposed EPS mortar is the compressive strength. 

The compressive strength after 7, 14, and 28 days were determined by testing 150 mm cubes 

and the compressive strength after 28 days was also determined by testing 150x300 mm 

cylinders for all EPS mortar mixes under investigation as well as the control specimens. 

4.2.2.1 Development of the EPS mortar Compressive Strength with Time 

The development of the compressive strength as obtained from the cube tests of the control 

and EPS mortar mixes is given in Table 4.2 and Figure 4.2. 

Table 4.2: The development of compressive strength of the test cubes 

Mix 
150 mm cube compressive strength (MPa) 28-day 

ratio to 
7-day 

28-day 
ratio to 
14-day 7-day 14-day 28-day 

Control 23.35 24.92 32.58 1.40 1.31 
EM10 9.25 9.21 14.21 1.54 1.54 

EM15 4.70 6.53 7.35 1.56 1.13 

EM20 3.40 5.06 5.36 1.58 1.06 

EM26 3.2 3.5 3.5 1.1 1 
 



www.manaraa.com

76 

 

 

0

5

10

15

20

25

30

35

Control EM10 EM15 EM20 EM26

C
om

pr
es

siv
e s

tr
en

gt
h 

(M
Pa

)

Mix Design

7-day

14-day

28-day

 
Figure 4.2: The development of compressive strength of the test cubes 

Generally, the ratio between the 28-day compressive strength and the 7-day counterpart for 

concrete mixtures lies within the 1.3 and 1.7 range (Neville, 1981). Table 4.2 shows that the 

results of all test specimens fall within this range with the exception of EM26. While this 

ratio was 1.4 for the control specimens, it was little bit higher for EM10, EM15, and EM20 

where it was 1.54, 1.56, and 1.58 respectively. It was expected for the ratio obtained by EPS 

mortars to be lower than that of the control’s due to the effect of EPS aggregates in 

preserving the heat of hydration inside the cube during the hydration reactions (Tang et al, 

2008). This could be attributed, generally to the curing regimen. Curing was adopted for all 

specimens by wet burlap which was rewetted three times a day, however, EPS mortars have 

high rate of moisture transmissivity (Bisschop and van Mier 2008), i.e., dry at a faster rate 

and the necessary water amount for proper hydration might not have been maintained by this 

curing regime. Therefore, it is better cure EPS mortars by soaking them in fresh water. 

Nonetheless, the curing regimen did not have its toll on mix EM26 because the volume of 

EPS was large enough to retain the heat of hydration inside the specimen. 

Figure 4.2 shows that the rate of strength development is in a fast deceleration with the 

increase in EPS content. Table 4.2 and Figure 4.2 show that little strength development 

occurred after the 14-day strength for the EPS specimens. This phenomenon was also noticed 

by several researchers (Babu and Babu, 2003; Chen and Liu, 2004; Babu et al, 2006; Tang et 

al, 2008). 
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As for the results of EM10, this mix suffered from segregation which negatively affected the 

consistency and quality of its compressive strength results. This is evident from the result 

obtained for the 14-day compressive strength, where, for similar density the seven day 

compressive strength was almost the same. 

4.2.2.2 28-day Compressive Strength of the Cubes and Cylinders 

The experimental results for the 28-day compressive strength of the EPS mortar cubes and 

cylinders are given in Table 4.3. It is worth mentioning that the results tabulated in Table 4.3 

are the average of 3 cubes and 3 cylinders. The relationship between the mix density and the 

28-day compressive strength is given in Figure 4.3 

Table 4.3: The compressive strength of EPS and control mortars cubes and cylinders 

Mix 

150 mm Cubes 150x300 mm Cylinders 

Average 
Density 
(kg/m3) 

Average 
Compressive 

Strength 
(MPa) 

Average 
Density 
(kg/m3) 

Average 
Compressive 

Strength 
(MPa) 

Ratio of the 
Cylinder 

Strength to the 
Cube Strength 

Control 2138 32.6 2143 26.40 0.81 

EM10 1630 14.2 1710 11.40 0.80 

EM15 1553 7.4 1539 6.70 0.90 

EM20 1268 5.4 1288 4.50 0.83 

EM26 970 3.5 982 2.65 0.76 

 

Table 4.3 and Figure 4.3 depict a steep decrease in compressive strength with the increase of 

the EPS content. For the cube specimens, the first dosage of EPS wastes, EM10, decreased 

the density by about 24% and caused a significant decrease of the compressive strength by 

about 56%. The maximum decrease in both density and compressive strength was achieved 

by mix EM26 which is 55% and 89% respectively less than that of the control mix. The sharp 

decrease in strength stems from the fact that EPS particles are modelled as air voids and EPS 

mortars as cellular concretes (Haidar and Pijaudier-Cabot, 2002; Miled at al,2004; Bouvard et 

al, 2007). The vast variation between the elastic characteristics of EPS particles and the 

surrounding matrix may result in its indifference to the presence of EPS particles as if they 
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were air voids. The EPS wastes (Addipore) gradation as presented in Chapter 3 had a 

maximum size of 19 mm and a minimum size was 2.38 mm, the particles were in the form of 

irregularly shaped prismatic pieces (shreds) and oval crumbles to small beads of poor quality. 

The characteristics of Addipore created large pockets of negligible strength in the relatively 

strong mortar matrix resulting in steep and sharp decrease in the compressive strength of the 

composite accompanied to its first inclusion dosage.  
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Figure 4.3: Relationship between mix density and 28-day compressive strength of EPS 

mortar 

Figure 4.3 shows that the relation between the EPS mortar density and compressive strength 

was best fitted as a quadratic relation as follows: 

Fc = 2 x 10-5 ρ2 - 0.0428 ρ + 24.435, for 150 mm cubes 

Fc = 2 x 10-5 ρ2 - 0.0421 ρ + 25.011, for 150 x 300 mm cylinders 

Where “Fc” is the compressive strength in MPa, and “ρ” is the dry density of the mix in 

kg/m3. The power relation is in line with the previous research by Babu et al, 2006 and Kan 

and Demirboga, 2007. The obtained exponential relation between the compressive strength 

and EPS mortar density is a resultant of three factors: 1- the general EPS particle strength 

nature, 2-The specific EPS shape and size, and 3- the strength of the mortar matrix. Table 4.3 
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shows that the ratio of the cylindrical compressive strength to the cube compressive strength 

was about 0.8 for all mixes with the exception of EM15 which was 0.9.  

4.2.2.3 Failure pattern of Cubes and Cylinder 

The failure pattern of the cylinders and cubes is presented in Figures 4.4 and 4.5 respectively. 

The control mortar cylinders and cubes failed by localized inclined shear cracks. The narrow 

crack width may have resulted from the absence of coarse aggregates because splitting cracks 

are formed around the maximum size of the aggregate, which are sand particles in mortars.  

On the other hand, EPS content enhances the ductility of the failure of EPS mortar cylinders 

and cubes which is characterized by crack initiation at lower stress than the ultimate’s. The 

increase in EPS content results in more gradual failure that is characterized by extensive 

inclined cracks and spalls that was noticed on all cylinders. The lightest EPS mortar 

cylinders, EM26, exhibited maximum lateral dilation and sliding crack in compressible 

failure form.  

Moreover, the inclusion of the first EPS particles produced a more ductile failure that was 

characterized by the dispersion of splitting inclined and sliding cracks over the volume of the 

cube. Lighter mixes, namely, EM15 exhibited dispersed and inclined hair cracks that indicate 

increase in the ductility of the EPS mortar upon failure. Mix EM20 exhibited similar shape of 

cracks but at a much less intensity. The lightest EPS mortar mix exhibited a rather 

compressible failure. Surface cracks were barely visible and were hugely dispersed. 

  

(a)  
Control Specimen 

(b)  
EM10 Specimen 

(c)  
EM15 Specimen 

(d)  
EM20 Specimen 

(e)  
EM26 Specimen 

Figure 4.4: Failure pattern of the EPS Cylinders 
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(a) Control Specimen (b) EM10 Specimen (c) EM15 Specimen 

  

(d) EM20 Specimen (e) EM26 Specimen 

Figure 4.5: Development of the ductile failure with the increase of EPS content 

EPS wastes, likewise some aggregates from wastes, for example rubber tyre aggregates, do 

not fail. The deformability of aggregates such as EPS allowed differential dilation and lateral 

expansion of the mortar under compressive loading. However, the surface adherence of EPS 

and mortar matrix was effective just to allow mortar to gradually slide and spall but not to 

suddenly crush and collapse. The ductility of EPS mortar failure could be explained by the 

dampening (cushioning) effect of EPS particles to the further dilation of the crushed mortar 

that indicated ductile failure. Therefore, although EPS is assumed air voids because of its 

zero strength, EPS mortars have a significantly different failure pattern from that of aerated 

concretes. 

4.2.3 Static Modulus of Elasticity 

The results of the static modulus of elasticity of the five mixes are presented in Table 4.4. 

The values of the static modulus of elasticity of the EPS mortars of different densities ranged 

between 8 and 53 per cent of that of the control mix depending on the EPS content. 
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Table 4.4: The modulus of elasticity and splitting tensile of EPS and control cylinders 

Mix 

150x300 mm Cylinders 

Test results for E Test results for indirect tensile 
strength 

Average Density 
(kg/m3) 

Average Static 
Modulus 

(GPa) 

Average Density 
(kg/m3) 

Average Tensile 
Strength 
(MPa) 

Control 2196 15.50 2120 2.87 

EM10 1658 8.20 1762 1.46 

EM15 1443 5.60 1553 1.22 

EM20 1236 3.60 1320 0.78 

EM26 1020 1.2 964 0.55 

The decrease of the modulus of elasticity of EPS mortars with density is presented in Figure 

4.6, which is best fitted with a linear regression relation according to the following equation: 

E = 0.0122 ρ - 11.55 

Where E is the modulus of elasticity in GPa and ρ is the density of the mix in kg/m3. The 

modulus of elasticity of EPS mortar is estimated as a combination between the moduli of 

elasticity of the components (phases); namely: the mortar and the EPS particles. Hence the 

decrease in the static modulus of EPS mortars with the decrease in density resulted from the 

fact that lighter mixes have lower and freer mortar body to deform. Moreover, the amount of 

sand in lighter EPS mortars (mortars with more EPS) decreased and resulted in richer mortars 

with lower E.   
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Figure 4.6: relationship between modulus of elasticity and EPS mortar density 

The relationship between the static modulus of elasticity of EPS mortars and the 

corresponding compressive strength is presented in Figure 4.7. The figure shows that the 

relationship between the static modulus of elasticity of EPS mortars and its corresponding 28-

day compressive strength is best fitted by a second order polynomial relation as follows: 

E = -0.0141 Fc
2 + 0.9916 Fc - 0.8896 

Where E and Fc are the modulus of elasticity in GPa and compressive strength in MPa 

respectively. Further, it is noticed that the compressive strength is more sensitive to the EPS 

mortar density variation than the static modulus. For example, the first inclusion of EPS in 

the mortar mix, EM10, reduced the compressive strength to 44 % and the static modulus to 

53 % of that of the control mix. The different response between the compressive strength and 

the static modulus of EPS mortars could explain the former’s volatility towards change in 

density.  
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Figure 4.7: Relationship between the Static Modulus of elasticity and the 28-day compressive 
strength of EPS mortar 

4.2.3.1 Stress-strain Curves 

The stress-strain curve obtained for the control mix and the EPS mixes are presented in 

Figure 4.8. Comparing the stress-strain relationships of the control specimen with the EPS 

specimens clearly shows that the control specimen had a much stiffer relationship which 

implies a higher modulus of elasticity as explained in the previous section. The stiffness of 

the mortar was reduced by the increase of the EPS content. It is also noticed that the stress-

strain curve of the control cylinders is convex and those of the EPS mortars are concave, 

which is intrinsic in the measuring instrument, loading rate and cycles (Bastgen and 

Harmann, 1977). The concavity of the curve was produced from the steady, low rate of 

loading adopted during testing the specimen on the MTS while the convex shape was 

produced from the unsteady and faster loading rate inherent in the UTM. This is why, 

determining the secant modulus—tangent to curve—would have been over-estimated the 

convex curves and under estimated the concave curves (Bastgen and Harmann, 1977). 

Especially that, one loading cycle was adopted in measuring the stress-strain curves, and 

different loading rates allowed the specimens to develop resistance at different pace that 

would affect the results obtained from the elastic region. As a result, the ASTM C 469 was 

adopted—which uses the chord method—for determining the static modulus of elasticity 

which does not stipulate specific loading rate or cycles in determining E. Nonetheless, 
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plotting the loading and defending portions of the stress-strain curve of EPS mortars might be 

important in interpreting its gradual and ductile failure.  

The control, EM10, EM15, EM20 and EM26 had strains of 0.002, 0.0056, 0.0038, 0.0045, 

and 0.0033 respectively at the maximum corresponding stress. The higher strains of mixes 

EM10, EM15 and EM20 fits the LWA concrete stress-strain behavior explained by Neville, 

1981 and Chandra and Berntsson, 2002. Similar stress-strain behavior was reported on EPS 

mortars by Bouvard, et al. 2007. 
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Figure 4.8: Stress-strain curves of the control and EPS cylindrical specimens 

The descending part of the stress-strain curves of the EPS mortar would greatly assist in 

explaining the improved failure behavior of EPS mortar because it identifies the formation of 

unstable fissures starting close to the ultimate stress and ending by the complete failure of the 

specimen. Post ultimate stress, the EM10 mix exhibited sudden drop in stress that indicated 

loss of specimen integrity. This might be explained by the failure pattern that was 

characterized by the development of localized surface cracks. The macro-cracks formed 

released energy while the specimen was still carrying load and coalesced to produce the 

failure evident by the straight line of the descending curve. On the other hand, mixes EM15 

and EM20 exhibited high ductility where the ascending curve was symmetrically mirrored on 

the descending curve. Such a shape indicates the gradual and improved failure of the EPS 

mortars. It also tells the development of ductile dispersed micro-cracks and spall rather than 

the widening of existing local cracks, which was observed during testing. The EM26 mix is a 
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proof of the compressibility and toughness of ultra-light EPS mortars. The descending curve 

was almost flat and the specimen maintained carrying 85 per cent of the maximum load till 

the test was terminated. The cylinder specimen was shrinking in a compressible way during 

loading as a sponge. Micro-fissures were noticed as a result of the loss in height 

(compressibility).  

4.2.4 Splitting Tensile Strength 

The splitting tensile strength also known as the Brazilian test is used to indirectly gauge the 

tensile strength of concretes and mortars. The values of the splitting tensile strength of the 

control mix and the EPS mortar mixes are presented in Table 4.4. The decrease in splitting 

tensile strength with the decrease in density is shown in Figure 4.9 and is fitted by a 

polynomial equation as follows: 

Fst = 2 x 10-6 ρ2 - 0.0037 ρ + 2.4096 

Where Fst is the splitting tensile strength in MPa and ρ is the dry density of the mix in kg/m3. 

The first dosage of EPS particles decreased the splitting tensile strength by about 49% as 

compared to that of the control mix. The reduction of the splitting tensile strength of EPS 

mortar with the increase in EPS content registered 58, 73 and 81% as compared to that of the 

control mix corresponding to EM15, EM 20 and EM26. Evidently, the sharp drop in split 

tensile with the lowest EPS content is due to the little role the EPS particles had in resisting 

the propagation of the single crack induced by the Brazilian test. It is worth noting that the 

compressive strength and the splitting tensile follow the same power trend with the decrease 

in density. 
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Figure 4.9: Relationship between the splitting tensile strength and the density of the control 

and EPS mortar mixes 

The ratio between the splitting tensile and the compressive strength of the mortar specimens 

fell between 0.11 and 0.21 (control and EM26 mixes respectively), which conforms to the 

range suggested by Neville, 1981. Figure 4.10 shows the relationship between the splitting 

tensile strength and the corresponding cylinder compressive strength. The split tensile 

strength of EPS mortars increased with the increase of compressive strength. The relationship 

was best fitted by a linear regression as follows: 

 Fst = 0.0945 Fc + 0.4005 

Fst and Fc are the splitting tensile strength and the compressive strength in MPa respectively. 

The split tensile, like the E, is less affected by the EPS volume inclusion than the 

compressive strength.  
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Figure 4.10: Relationship between the splitting tensile and cylinder compressive strengths of 

the control and EPS mortar mixes 

4.2.4.1 Failure pattern 

The failure of the control and EPS mortar cylinders by splitting tensile is presented in Figure 

4.11. The failure of the control specimen resembled the classic splitting of the concrete into 

two halves by one splitting tensile crack. On the other hand, the first dosage of EPS improved 

significantly the failure pattern. Cylinders of mix EM10 had two brittle cracks as an 

impression of the loaded beam. The brittle cracks however, did not extend to the core of the 

specimen and were viewed as surface cracks. Lighter mixes showed longitudinal surface hair 

cracks along the length of the specimen. Mix EM20 and EM26 showed a pattern of 

compressible behaviour where longitudinal cracks were not developed in place of the loaded 

beam. Instead, the loaded beam left indentation of few millimetres deep which indicated 

energy absorption and high toughness. The split tensile failure is achieved by loading a strip 

with a uniformly distributed compression load P on the width of the strip which results in a 

homogenous stress field except for the concrete volumes close to the loaded strip (Kanos et 

al.). Failure occurs in the region close to the loaded strip under indirect tension by a splitting 

single crack. However, all EPS mortar specimens showed more than a single crack and 

preserved their integrity after failure which might indicate that near peak load, stresses were 

distributed on a wider region through successive cracking (energy release) and load 

redistribution (elastic straining). Assuming that the modulus of elasticity of concrete in 
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tension “Et” is similar to that in compression “Ec” (Kanos et al.), the following equation could 

be used to estimate the tensile strain, where “Fst” is the splitting tensile strength and “ε f” is 

the tensile strain (Kanos et al.).  

c

st
f E

F
  

This implies that the maximum peak tensile strain increases with the increase of EPS content. 

For example, the maximum tensile strain of the control and EM26 as estimated by the above 

equation is 0.18 x 10-3 and 0.46 x 10-3 respectively. The capacity of lighter EPS mortars to 

retain specimen integrity comes from its higher tensile strain at peak load. Moreover, the 

failure of EPS mortars could be explained by the stress-strain curves described earlier. 

Though tensile failure is brittle and sudden, the inclusion of EPS transformed it to be gradual 

and ductile, similar to that of EPS mortar under compression. This entails that EPS mortar 

might have transformed the simple tensile failure into a complex failure like that of 

compression as has been shown in the failure plateau and defending leg of stress-strain curves 

in Figure 4.8. 

     
(a) 

Control Specimen 
(b) 

EM10 Specimen 
(c)  

EM15 Specimen 
(d) 

EM20 Specimen 
(e) 

EM26Specimen 

Figure 4.11: Splitting failure patterns of the control and EPS mortar cylinders 
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4.3 Expanded Polystyrene Mortar (EPS) Hollow Blocks 

4.3.1 Compressive strength of EPS Hollow Blocks 

The compressive strength of the EPS hollow blocks are assessed in accordance with the limits 

set by the ASTM C 90, ASTM C 129, and the Egyptian Standards. Table 4.5 presents the net 

compressive strength of the hollow blocks, which is calculated by dividing the ultimate 

compressive load over the area of the block less the area of two cavities (net area) and the 

gross compressive strength which is calculated by dividing the ultimate compressive load 

over the bulk area of the block (200 x 400 mm).  

Table 4.5: The density, weight and strength of EPS hollow blocks 

Batch 
Average of Three Blocks 

Density (kg/m3) Weight (kg) Gross Strength (MPa) Net Strength (MPa) 
CBP 2119 23.5 6.6 9.5 

CBW 2092 23.2 6.6 9.5 

CBF 2157 23.9 6.0 8.7 

EMBP10 1758 19.5 4.8 6.9 

EMBW10 1910 21.2 4.7 6.8 

EMBF10 1750 19.4 4.4 6.3 

EMBP15 1487 16.5 2.9 4.1 

EMBW15 1497 16.6 3.4 4.9 

EMBF15 1408 15.6 3.4 4.9 

EMBP20 1265 14.0 3.0 4.3 

EMBW20 1246 13.8 3.1 4.5 

EMBF20 1242 13.8 2.8 4.0 

EMBP26 956 10.6 1.7 2.4 

EMBW26 957 10.6 1.6 2.4 

EMBF26 982 10.9 1.6 2.4 
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Table 4.6: The density, weight and strength of EPS solid bricks 

Batch 
Average of Three Bricks 

Density (kg/m3) Weight (kg) Strength (MPa) 

CBR 2150 3.8 8.6 

EMBR10 1679 2.9 5.9 

EMBR15 1558 2.7 4.4 

EMBR20 1354 2.4 3.5 

EMBR26 995 1.7 2.2 

 

The ASTM uses the net compressive strength of hollow block concrete masonry units (CMU) 

which specifies a minimum strength of 13.1MPa and 4.14Mpa for load bearing and non-load 

bearing units respectively. On the other hand, the Egyptian Standards (EOS 2005/42) 

specifies the required strength for solid and hollow blocks which varies with the density of 

the block as follows: 1) minimum strength of 7.0, and 5.6 MPa for load bearing solid blocks 

of low or medium density (< 2000 kg/m3) and heavy density (> 2000 kg/m3) respectively, 2) 

minimum strength of 5.0, and 4.0 MPa for load bearing hollow blocks of low or medium 

density and heavy density respectively, 3)  minimum strength of 2.5, and 2.0 MPa for none 

load bearing solid blocks of low or medium density and heavy density respectively, and 4)  

minimum strength of 2.0, and 1.6 MPa for none load bearing hollow blocks of low or 

medium density and heavy density respectively.  The density, weight, and strength of the EPS 

hollow blocks and solid bricks are presented in Tables 4.5 and 4.6. It is worth mentioning that 

a typical commercial concrete hollow block of dimensions 200x400x200mm was tested and 

the recorded results for this type were: 1) average density of 2100 kg/m3 (heavy density), 2) 

weight of unit of 17.2 kg, and 3) average net strength of 5.5 MPa. 

Based on the results given in Table 4.5, all EPS hollow block units, except batches made with 

EM26 mortar (EMBP26, EMBW26 and EMBF26) comply with the ASTM C-129 strength 

criteria for non-load bearing hollow blocks used for above grade and external wall 

application. On the other hand, while hollow blocks made with the control and EM10 mortar 

(CBP, CBW, CBF, EMBP10, EMBW10 and EMBF10) comply with the EOS 2005/42 

strength criteria for load bearing applications, the rest of the EPS hollow block batches 
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comply with the EOS 2005/42 strength criteria for non-load bearing hollow blocks used for 

above grade and external wall application. As for the EPS solid brick, EPS solid brick 

batches made of EM10 and EM15 mortar complied with ASTM C-129 for similar 

application. On the other hand, all the EPS solid brick batches except for EMBR26 complied 

with the Egyptian standards for non-load bearing applications while the control batch 

complied with the requirements of load-bearing applications. 

 4.3.2 Effect of EPS Content on Density 

The percent inclusion of EPS in the EPS mortar hollow blocks made from the EM10, EM15, 

EM20, and EM26 batches reduced the density by 15, 31, 41 and 54 per cent as compared to 

that of the control.  The EPS bricks made from the respective batches had their density 

reduced by 22, 28, 37 and 54 percent compared to that of the control. The results of density 

reduction conform to those registered for cubes and cylinders discussed earlier. Figures 4.12, 

4.13 illustrate the density and weight reduction obtained for the different hollow blocks and 

bricks batches. Table 4.5 shows that EPS hollow blocks made of EM15, EM20, and EM26 

were lighter than the conventional concrete block available in the Egyptian market. These 

types of EPS hollow blocks have a unit weight below 16.5 kg and would be convenient for 

laborers to handle and stack.  

The density and the unit weight of the EPS solid bricks followed the same pattern and 

reduced with the increase of the EPS content. Because of the small dimensions of the brick 

unit, its weight is very small as compared to the block weight which makes it more 

convenient in handling.   
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Figure 4.12: The density of the control and different batches of EPS mortar hollow block 

units 
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Figure 4.13: The density of the control and different batches of EPS mortar solid bricks 
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4.3.3 Effect of EPS Content on Compressive Strength 

The compressive strength of the EPS mortar hollow blocks and solid bricks was adversely 

affected with the increase of EPS particles content as illustrated in Figures 4.14 and 4.15. 

Hollow blocks made from batches EM10, EM15, EM20, and EM26 showed 28, 50, 54 and 

74% less compressive strength when compared to that made from the control mix. On the 

other hand, the solid bricks made from batches EM10, EM15, EM20, and EM26 had 31, 49, 

59 and 74% less compressive strength when compared to that made from the control mix.  

The strength reduction exhibited by EPS hollow and solid masonry units with the EPS 

content is almost similar. Nonetheless, when the compressive strength of the hollow blocks 

and solid bricks is compared as a percentage to that of the cubes and cylinders, the strength 

difference diminishes. For example, the compressive strength of the control and EPS mortar 

hollow blocks as a percentage of that of the cubes for the control, EM10, EM15, EM20, and 

EM26 mixes was 28%, 47%, 63%, 79% and 68% respectively. In addition, the compressive 

strength of the control and EPS mortar solid bricks as a percentage of that of the cubes for the 

control, EM10, EM15, EM20, and EM26 mixes was 26%, 42%, 59%, 65% and 63% 

respectively. This observation could be explained by the shape effect elaborated in the next 

section. 
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Figure 4.14: The net compressive strength of the control and different EPS hollow block units 
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Figure 4.15: The compressive strength of the control and different EPS solid bricks 

4.3.4 Shape effect on Compressive Strength 

Specimens of different shape and surface finish were tested for compressive strength. This 

section aims at depicting the variation of compressive strength of the control and EPS mortars 

with the shape of specimens, surface finish and boundary conditions. It is important to relate 

the compressive strength of the cubes to the hollow blocks and bricks because the 

compressive strength of cubes is generally used as a representation of the strength of a given 

structure. Figure 4.16 shows the compressive strength of cylinders, cubes, hollow blocks and 

bricks of the control and EPS mortar mixes, Ferrocement Blocks and Fibrocement Blocks are 

respective acronyms for steel mesh reinforced and GFRP reinforced blocks. The figure 

demonstrates that the control specimens have the following strength vs. shape characteristics: 

1) the cubes gave higher compressive strength than the cylinders, 2) the compressive strength 

obtained by cylinders and cubes was significantly higher than those obtained by the hollow 

blocks and the bricks, 3) hollow blocks had slightly higher compressive strength to that of the 

bricks. However, as the EPS content increased, the shape effect of the specimens was 

downscaled. This is better illustrated in Figure 4.17 that shows the compressive strength of 

the control and EPS hollow blocks as a percentage of that of the cubes and cylinders of 

respective batches. Similar relation for the solid bricks is presented in Figure 4.18. The 

relative percentage of the compressive strength of the control hollow blocks was the lowest. 
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The introduction of the first EPS dosage increased the relative percentage and reached the 

highest value for hollow blocks made from the EM20 mix. For example, from Figure 4.17, 

the compressive strength of the control plain hollow blocks is 29% and 36% of the 

compressive strength of the control cubes and control cylinders respectively. 
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Figure 4.16 Effect of Specimen type and shape on the compressive strength of different 

specimens 
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Figure 4.17: Percentage hollow block strength of the cube and cylinder strength 
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4.18: Percentage solid brick strength of the cube and cylinder strength 

Similar trend was found for the solid bricks with the exception that the percentage of the 

strength relative to that of cylinders kept increasing up to the solid bricks made of EM26. 

Furthermore, the graph shows that the strength of the hollow blocks and bricks as a 

percentage of the compressive strength of cubes is lower by about 10 to 20% when compared 

to the compressive strength as a percentage of that of cylinders because cubes yield higher 

compressive strength than cylinders.  

In the summary, the effect of shape variation on the compressive strength was more 

pronounced in the case of control specimens. The shape effect rises from the development of 

frictional—shear forces—between the loading platen and specimen that exerts confining 

pressure on specimens and counteracts its lateral deformation while loading. The platen 

confining effect and hence the shape effect is reduced by using frictionless platen such as 

rubber pad between the loading platen and the specimen, which was the procedure for all 

hollow blocks, solid bricks and cylindrical specimens. The cubes had friction boundary 

conditions. Although frictionless boundary conditions were applied, for almost all the 

specimens, the shape effect predominated the results of the compressive strength obtained by 

the control mix and diminished in all the EPS mortar specimens. Constant boundary 

conditions maintained for all the tested specimens assumes that the shape effect diminishing 
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influence on the compressive strength of EPS mortar specimens is intrinsic to the EPS 

aggregates effect. Moreover, the shape effect influenced the compressive strength of the 

control and EPS mortar cubes and cylinders. As a result, the apparent diminish of the shape 

effect could be explained by 1- the geometry of the presence of holes in the hollow blocks, 2- 

the very low slenderness ratio of the solid bricks and 3- the ability of EPS mortars to deform 

and redistribute stresses after crack initiation. The frictionless boundary conditions and the 

small thickness of the hollow block faces allowed the masonry units to deform in a barreling 

shape under compressive loading, which might have induced tensile stresses. The plain 

mortar of the control hollow blocks had limited straining characteristics and splitting cracks 

occurred which undermined the section to carry further load and failure occurred. Therefore, 

the presence of holes in the control hollow blocks undermined load carrying capacity and 

mortar efficiency. On the other hand, EPS mortars showed that they have higher straining 

ability, higher tensile toughness and sustained load long after crack initiation. As a result, the 

EPS mortar hollow blocks increased the mortar efficiency in load carrying despite the 

presence of the holes. Nonetheless, the capping of EPS mortar hollow block specimens might 

have exerted some restraining effects on lateral expansion because uncapped specimens 

exhibited more spalls upon failure, however, yielded more or less similar compressive 

strength. 

This is similar to the case of the control solid bricks, where the very low slenderness ratio 

(almost 0.25) amplified the differential effect between its frictionless top that was free to 

deform and its friction bottom—the platen where the specimen rested— which resulted in 

splitting tensile cracks extending from top to bottom. However, the more straining 

characteristics of the EPS mortars allowed the specimen to sustain the differential 

deformation and withstand loading post the initiation of cracks.  

The influence of EPS on the failure behavior of mortar is explained better in section 4.3.6 

which discusses the failure pattern of different blocks. This is because explaining the 

geometry effect is inseparable from the pre-peak and post-peak specimen reaction to loading 

through the quantity and quality of cracks. 
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4.3.5 Reinforcement effect 

The compressive strength of the reinforced blocks, in general, was expected to yield higher 

compressive strength than the plain ones. The expected higher compressive strength is 

attributed to the contribution of the vertical strands of the wire mesh in carrying some of the 

compressive strength load in addition to the confinement effect the horizontal stands of the 

wire and GFRP meshes would exert on the blocks. However, the ferrocement and plain 

hollow blocks of the EM10 mix had almost equivalent compressive strength, which was 

higher than that of the GFRP reinforced ones. The lower compressive strength obtained by 

the latter could be attributed to weak fiber strands in the direction of compression which 

would have lessened their confinement effect. This is also related to the difficulty in casting 

the GFRP reinforced specimen that resulted in some deformations, folds and tilts in the mesh 

wrap that underestimated its confinement effect. 

The control ferrocement hollow blocks carry equivalent compressive strength as that of the 

plain ones. The presence of the wire mesh caused the mortar face to crack near the ultimate 

load due to the differential modulus of elasticity—straining capacity—between the mortar 

matrix and the reinforcement which reduced mortar’s effective area in resisting the 

compressive strength. This resulted in a lower compressive strength of the control 

ferrocement hollow blocks than expected. A similar mortar cracking phenomenon occurred to 

GFRP reinforced hollow blocks, in addition to the ripping of parts of the fiber mesh itself 

which reduced its integrity and ability to confine the mortar. As a result GFRP reinforced 

hollow blocks exhibited the lowest compressive strength in its group. 

The EPS mortar had a combination of factors that might have affected its compressive 

strength as plain and reinforced composite. The first effect is the variation of density 

mentioned at the beginning of this chapter. It was reported that the minor variation in density 

would result in a pronounced increase in the compressive strength of EPS mortars. The 

adverse effect of density variation is noticed in the compressive strength of the plain and 

reinforced batch of the hollow block of mix EM10. The ferrocement reinforced hollow block 

belonging to this batch yielded a compressive strength and density of 6.8 MPa and 1910 

kg/m3 respectively. Its plain counterpart yielded a 6.9 MPa compressive strength and had a 

density of 1758 kg/m3. The effect of density is obvious because, following the pattern of the 

control blocks, cracking of the mortar reduced its ability to carry compressive load, however, 
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because the density of the ferrocement blocks was higher than that of the plain ones, their 

compressive strength was also higher. The density effect was offset with the GFRP reinforced 

hollow blocks belonging to the same batch, which had close density to that of the control 

ones and exhibited lower compressive strength as expected. 

On the other hand, lighter reinforced EPS hollow blocks, namely, EM15 and EM20 mixes, 

exhibited a different behavior. These different blocks in these batches had almost similar 

densities and exhibited mortar matrix shear cracks and spalls with the increase in the 

compressive load. However, the ferrocement hollow blocks had higher compressive strength 

than that of the plain and fiber ones in consequence to a better utilization of the tri-axial 

confinement exerted by the wire mesh. Moreover, the vertical and horizontal strands of the 

wire mesh might have resisted some of the compressive load (Johnston and Mattar, 1976) in 

addition to the crack bridging effect of the reinforcement that might have prolonged the load-

carrying capacity of light EPS mortar hollow blocks long after cracking. This trend was also 

noticed on GFRP reinforced EPS blocks made with mix EM15. Nonetheless, GFRP 

reinforced EPS hollow blocks belonging to batch EM20 exhibited lower compressive 

strength than that of the plain and ferrocement although they had similar density and similar 

matrix modulus of elasticity. As a result, the confinement effect of GFRP mesh and its 

contribution to the increase in the compressive strength cannot be confirmed for the GFRP 

EPS mortar hollow blocks. 

The lightest EPS mix exhibited almost equivalent compressive strength for its three types 

plain, ferrocement and fibro-cement which indicate that reinforcement was ineffective in this 

batch. 

Evidently, the inclusion of reinforcement did not shift any of the hollow blocks from non-

load bearing category to load-bearing category. Nonetheless, improvement of failure pattern 

was observed on all reinforced hollow blocks. Henceforth, the wire mesh and fiber mesh 

confinement might have an effect on the pre-peak behavior of the specimens; however, its 

effect on the post-peak behavior of EPS mortar hollow blocks was pronounced and will be 

further discussed in the following section. 
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4.3.6 Failure Pattern of the Hollow Block Specimens 

Figure 4.19 (a) exhibits the failure pattern of the control plain hollow blocks. The extension 

of the vertical cracks from the upper bound to the lower bound of the specimen indicated 

sudden and brittle failure. The crushing of the specimen was expected because of its low-

slenderness and prismatic shape (Carpinteri et al. 2001). On the other hand, the failure of the 

ferrocement control hollow blocks was completely different. The initiation of the first crack 

occurred before reaching the ultimate stress which is a sign of gradual failure. Figure 4.19 (b) 

shows that the control ferrocement hollow blocks were intact and minimum debris was 

noticed. Vertical cracks were inclined in the form of localized shear cracks that took the 

shape of a wedge. Also, the extent of the vertical cracks from the top of the specimen to the 

depth of the formed wedge told the degree of specimen confinement and boundary 

conditions. Furthermore, horizontal splitting tensile cracks seem to bridge between the 

inclined shear cracks indicating that the wire mesh strands bridged the vertical cracks. Similar 

behavior was also noticed on the failure pattern of the control GFRP reinforced hollow blocks 

as shown in Figure 4.19 (c). However, some of the blocks split into two halves from the 

corner as the fiber wrap strands were torn upon failure. In summary, the presence of the wire 

mesh enhanced the ductility of the failure of the control hollow blocks. It must be noted that 

slippage of the wire and fiber wrap occurred as the loading machine initiated loading. 

 
a) Plain Hollow 

Block 
b) Wire mesh reinforced 

hollow block 
c) Fiber glass reinforced 

hollow block 
Figure 4.19: Failure pattern of the plain, wire mesh reinforced, and glass fiber reinforced 

control hollow blocks 
 

On the other hand, the first inclusion of EPS dosage (EM10) enhanced the failure pattern of 

the plain hollow blocks significantly. EPS mortar hollow blocks exhibited first crack at 

strengths much lower than the ultimate strength which is a sign of prolonged failure and 

toughness. Figure 4.20 shows the failure pattern of plain EM10 hollow blocks. All the 

compressive cracks were inclined shear cracks and sliding wedges which indicated high 
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toughness and ductility (Vonk 1993). The shape and depth of the wedge indicated frictionless 

boundary conditions. The EMBP10 specimens were highly intact after failure. The failure of 

the EMBP10 specimens was affected by the EPS inclusion more than the shape of the 

specimen. Prisms of low slenderness are characterized by dispersed vertical splitting cracks 

that cover the entire volume of the specimen (Vonk 1993). But with the inclusion of the EPS 

particles, the cracks became finer and concentrated in a wedge pattern that followed the 

confinement conditions of the specimen. An interesting observation occurred in the depth of 

cracks, most of the cracks were surface ones and the EPS blocks were intact at failure. 

  
a) Plain EM10 hollow block b) Wire mesh reinforced EM10 hollow block 

Figure 4.20: Failure pattern of the plain, wire mesh reinforced EM10 hollow blocks 

 
The increase in the EPS dosage increases more the ductility and toughness of the EPS mortar 

hollow blocks as shown in Figure 4.21 and 4.22. Lighter plain EPS mortar hollow blocks 

would have more dispersed spalls and sliding triangular cracks rather than defined cracks. 

 

   
a) Plain EM15 hollow 

block 
b) Wire mesh reinforced 

EM15 hollow block 
c) Glass Fiber reinforced 

EM15 hollow block 

Figure 4.21: Failure pattern of the plain, wire mesh reinforced, and glass fiber reinforced 
EM15 hollow blocks 
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a) Plain EM20 hollow block b) Wire mesh reinforced EM20 hollow block 

Figure 4.22: Failure pattern of the plain, wire mesh reinforced EM20 hollow blocks 

The failure enhancement with the first dosage of EPS was further refined with reinforcement. 

Although the presence of spalls and sliding cracks is indicative of higher toughness, the 

absence of cracks is a proof of ductility. It seems like the combination of EPS and 

reinforcement mesh produced refined and more inclined shear cracks that were barely visible. 

Steel and fiber wires acted at the initiation of the formation of tensile cracks by bridging them 

to produce a finer shear lines. The inclined shear cracks were almost 45 degrees in an 

indication of a more ductile failure (Vonk 1993). The inclined cracks also indicated that the 

direction of the maximum stresses changed from the vertical direction due to the presence of 

reinforcement.  

The shape of the cracks resembled the shape of confined stresses that were provided by the 

frictionless boundary conditions. The less cracked block maintained close compressive 

strength as that of the plain blocks. Also, the presence of reinforcement resulted in a more 

prolonged and gradual failure. On the other hand, lighter reinforced EPS mortar hollow 

blocks exhibit inclined hair cracks that are localized in the direction of the composite action 

between the reinforcement and the EPS mortar. Hollow blocks made of EM26 mix showed 

failure by compressibility and cracks in plain and reinforced specimens were invisible. And, 

the sliding cracks in the form of spalls appeared shyly.  

4.3.7 Failure Pattern of the Solid Brick Specimens 

Unlike the hollow block specimens, the failure pattern of the brick specimens was governed 

and influenced mainly by their low slenderness ratio (Carpinteri et al. 2001 and Vonk 1993). 

The height to width (slenderness) ratio was very low that the crack pattern was highly 

distributed across the length and width of the specimen. The noticed effect of EPS on the 

failure pattern was that higher EPS content resulted in more ductile and tougher failure. 
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Although the increase in EPS content produced finer shear cracks and sliding spalls, it also 

produced higher volume of cracks that were dispersed over the whole volume of the brick as 

an indication of the ductility and energy release during failure. Figure 4.23 displays the 

transition of ductile failure from localized vertical cracks for EPS bricks belonging to mix 

EM10 to the more diffused sliding cracks exhibited by bricks belonging to mix EM20. It is 

observed that cracks extended from the frictionless conditions towards the direction of 

friction conditions—from top to the bottom. 

   
a) EMBR10 b) EMBR15 c) EMBR20 

Figure 4.23: Failure pattern of the solid EPS bricks 

The above discussion of crack description and failure will help shed the light on the geometry 

effect observed on the control and EPS mortar specimens. Mortar is a quasi-brittle material 

whose strength characteristics were until the mid 1980s related to the size of specimen in a 

statistical relation. Weibull theory depicted that failure occurred in specimens of large 

volume at lower strengths because they were more probable to encounter a critical zone of 

weak strength that would foster the progressive growth of micro-cracks that lead to a 

propagating failure. However, this theory is rebutted when a macro crack develops and is 

sustained in the specimen before reaching the peak load, which is the case in all EPS mortar 

specimens. The existence of a sustained non-propagating crack and the dispersion of cracks 

result from the interaction between the stress redistribution at maximum load and energy 

release of load through dispersed cracking in the fracture process zone (area in front of the 

fracture tip). The localization of damage in definite bands—brittle deep cracks—in the 

control specimens is a deterministic size and shape effects symptom.  However, the 

diminishing of localized cracks in EPS mortar specimens indicate a shift in ductility and 

increase in toughness where, a large fracture process zone exists, energy is released through 

non-propagating cracks and load redistribution counteracts crack propagation.  

4.4 Durability Test Results 

This section presents the experimental results obtained from the durability tests. The 

durability performance of control specimens and plain, glass fibre mesh reinforced and wire 
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mesh reinforced EPS mortar hollow blocks when subjected to aggressive environments as 

explained in Chapter 3.  

4.4.1 Absorption test results and discussion 

The hydrated paste in concretes and mortars is considered as porous materials. Absorption is 

an indirect measurement of concrete and mortar durability. The vulnerability of concrete and 

mortar to absorb water increases the chance of penetration of deleterious solutions and 

chemicals.  

The average absorption percent of EPS mortar hollow blocks is presented in Table 4.7. The 

maximum limits of water absorption of concrete hollow blocks as stated in ASTM C90 are 

also presented in Table 4.7. The values obtained from the control hollow blocks indicate the 

excellent quality of the mortar matrix. The table shows that the mean value of water 

absorption for all test specimens, regardless of the EPS content, is well below the maximum 

allowable limits as specified by ASTM C90. 

Table 4.7: Absorption percent of the different types and densities of EPS hollow blocks 

Batch 
Average 
Density 
Kg/m3 

Average Absorption % 

Sorted by Reinforcement Type 
ASTM C 90 
Maximum 

Water 
Absorption Plain Wire Mesh Fibre Mesh 

kg/m3 % kg/m3 % kg/m3 % kg/m3 

C 2135 10.03 0.47 16.44 0.77 19.86 0.93 208 

EM10 1686 51.1 3.03 56.83 3.37 57.50 3.41 240 

EM15 1441 53.74 3.73 56.77 3.94 63.54 4.14 288 

EM20 1214 55.95 4.61 52.91 4.36 44.17 3.64 288 

EM26   959 31.84 3.32 33.28 3.47 26.47 2.76 288 

The good quality of the pore structure of the control hollow blocks, as depicted by the very 

low percentage of absorption, could be mainly attributed to the silica fume that enhanced the 
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pore structure of the blocks. Silica fume densifies the cement matrix and produces finer and 

disconnected pore system (Song et al, 2010). The average absorption values increased sharply 

by replacing part of the fine aggregate volume by 10 kg/m3 of EPS (the lowest dosage of EPS 

in the current study) regardless of the type of mesh reinforcement. The absorption ratio 

increased from 0.47 % for the plain control specimen to 3.03% for the case of plain hollow 

blocks, from 0.77% to 3.37% for wire mesh reinforced hollow block, and from 0.93% to 

3.41% for the case of glass fiber mesh reinforced hollow block. This abrupt behavior 

indicates that the quality of the mortar matrix, as manifested in absorption values, was 

affected by the inclusion of EPS. The table also shows that the average water absorption 

values of EPS hollow blocks do not seem to vary significantly with the increase of EPS 

dosage beyond the lowest dosage of 10kg/m3. The observed absorption percentage for all 

types of hollow blocks is also illustrated in Figure 4.24.   
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Figure 4.24: Average water absorption for the different types of EM hollow blocks 

Despite of this increase, the absorption limits recorded by EPS hollow blocks were still well 

below the ASTMC 90 maximum absorption limits. Similar absorption range was reported by 

Babu and Babu, 2003 and was identified in this literature article as good quality mortar mix. 

The lowest average water absorption was recorded for the hollow blocks made with mix 

EM26 and the highest average water absorption was recorded for the ones made with mix 

EM20. The change of the percentage of water absorption with the change in EPS contents 
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and the type of mesh reinforcement did not show a definite pattern. The figure shows a 

relatively slow rate of increase of water absorption that starts with blocks made from mixes 

EM10 and ends with blocks made from mix EM20. This increasing trend is reversed to a 

decreasing pattern for hollow blocks made with mix EM26.  

EPS wastes are hydrophobic lightweight aggregates. Therefore, the drastic change in the 

absorption values comes from the effect EPS wastes on the matrix rather than the porous 

structure of the EPS aggregates as in case of processed porous lightweight aggregates such as 

LECA. Shrinkage is one of the factors that induce the formation of micro cracks in the 

cement paste matrix. Generally there are two types of restraining actions that result in 

shrinkage micro-cracks: 1-self restraint which occurs upon mortar drying due to the steep 

moisture gradient and shrinkage gradient between the mortar and the drying surface that 

constraints its shrinkage, 2-aggregate restraint of the cement paste from shrinking which is 

highly dependent on the size and concentration of aggregates (Bischoff and G.M. van Mier, 

2008).  

Shrinkage micro-cracks occur primarily in EPS mortars due to the restraining effect of the 

moulds. Micro-cracks due to this type of shrinkage restraint occur in perpendicular sense to 

the direction of the restraining face. The thin layer of EPS mortar that exists on the outer 

surface of the blocks is the one responsible for the permeability of the EM blocks and is 

subjected to three devastating effects: 1- the higher rate of drying of EPS mortar (Bischoff 

and G.M. van Mier, 2008), 2-the welcoming effect of EPS particle to cement paste shrinkage 

away from the moulds walls and 3-the tensile stresses developed in it due to the restraining 

action of the walls of the mould. In line with Bischoff and G.M. van Mier (2008) statement 

that cracks develop due to shrinkage in surface retrained concrete are assumed as macro-

cracks which increase the permeability problem, shrinkage macro-cracks would exist on the 

outer surface of the EPS hollow blocks. As the EPS dosage increases, the thickness of the 

mortar’s interface with the moulds surface becomes thinner and more perforated with more 

EPS particles which increases the tendency of cement paste to shrink and increases the micro-

cracks due to surface restraints. This is why most of the EPS hollow blocks had higher values 

of absorption at a rate that was relatively indifferent to the content of EPS in the mix.  As 

illustrated in Figure 4.24, the average absorption of EPS hollow blocks increases marginally 

from the EM10 hollow block and maximum values are reached by the EM20 blocks. 
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On the other hand, the lower average absorption values exhibited by the EM26 hollow blocks 

present a challenge in its interpretation. This phenomenon might be attributed to the 

assumption that the outer surface layer of the EM26 hollow blocks is formed of a thin film of 

cement paste of very low values of restraining sand aggregates. This film is connected to the 

rest of the block by a highly perforated cement matrix of hydrophobic EPS particles that form 

a sluggish path between the cracked surface mortar and the inner films of the mortar. This 

sluggish path as well as the hydrophobic effect of EPS particles might repel water.  

The reinforcing mesh in the skin of the hollow blocks has several effects which influence the 

absorption of the blocks. On one hand the reinforcement mesh helps in resisting the shrinkage 

cracks. On the other hand, the space between the reinforcement mesh and the mould’s walls 

was very tight despite the use of super plasticizer and vibration adoption. In addition, 

reinforced hollow blocks might have less compaction than the plain ones during casting to 

ensure that the reinforcement cage will not sway off its position which might have caused the 

formation of more surface pores or air pockets that allowed for the ingress of water. The 

obvious trend is the negative effect of wire and GFRP mesh reinforcement on the absorption 

of the control and EPS hollow blocks. However, the absorption of plain hollow blocks made 

of EP20 mortar was higher than that of reinforced blocks. The may be explained by the fact 

that the effect of shrinkage cracks may have suppressed the other effects for this mix.    

Another factor that might require further research is the absorption behavior of the EPS 

aggregates. As previously stated in Chapter 3, EPS aggregates have 2.7% water absorption, 

which is nearly equal to the difference between the control and EPS hollow blocks absorption 

values. Although the absorption capacity of EPS aggregates were nearly impossible to gauge 

by soaking the aggregates in water--as they float, may be the pressure of the water ingress 

between the matrix interface with the EPS aggregates allowed the latter to host water inside 

its pores. Since both arguments have not been verifies by laboratory measurements, it is fair 

to consider that the higher absorption rate of EPS mortar hollow blocks is a compound 

behavior due to shrinkage and EPS aggregate high water absorption.  
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4.4.2 Acid/Sulphate test results and discussion 

This section illustrates the deterioration characteristic of the hollow block batches and the 

effect of weight loss on the compressive strength. The effect of the EPS dosage and 

reinforcement inclusion will also be discussed. 

4.4.2.1 Visual Observation 

When the control hollow blocks were immersed in the acidic solution, leaching occurred at 

near constant amount throughout the four cycles. By the second wetting cycle, the thickness 

of the face shell of the blocks was notably reduced and parts of the wire mesh were exposed 

in case of wire reinforced control blocks. The fiber reinforced blocks exhibited same 

deterioration where the fiber mesh wrapping one of the faces was completely exposed. The 

third wetting cycle exposed more of the wire and fiber reinforcement areas and weathered the 

exposed reinforcement wire mesh into air and the exposed fiber mesh into debris. The fourth 

wetting cycle exhibited more leaching and weathering. 

Visually, the first drying cycle was characterized by the formation of large dense whitish 

spots that protruded on the face shell of the blocks. The white expanded spots could be 

gypsum as reported in literature. The second drying cycle was characterized by the formation 

of a thin film of whitish yellowish layer that fell off with friction and the oxidation of the 

exposed part of the wire mesh. The gypsum layer exposed sand aggregates in a typical 

erosion deterioration. The thickness of the whitish layer continued to increase and the 

exposed wire and fiber continued to oxidize during the last two drying cycles. Similar 

deterioration was reported by Fattuhi and Hughes (1988). The deterioration of control blocks 

was characterized by the maximum leached contaminants of all the block specimens. 

The deterioration of EPS hollow blocks was significantly different. A general observation 

was that the amount of contaminants leached decreased with the increase of the content of 

EPS particles in blocks (decrease in density). Also, the leached material would flow out 

carrying surface EPS particles during the process. The first wetting cycle was characterized 

by maximum leaching of hydration products of all the four cycles. By the second wetting 

cycle, EPS blocks of higher densities revealed a reduction in the thickness of the face shell 

while EPS blocks of lower densities exhibited expansion in volume. Denser EPS blocks 

exposed some of the wire and fiber reinforcement, just a strand of wire or two. By the fourth 
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wetting cycle all EPS blocks exhibited some sort of expansion in the face shell. On the other 

hand, the first drying cycle revealed the eroded EPS particles and the surface shell had a thick 

gypsum layer formed. The rest of the cycles were characterized by the expansion of the 

eroded beads in a pop-corn like shape and the expansion of the gypsum layer. The eroded 

EPS particles and gypsum layer would fall off with friction. The revealed wire mesh was 

oxidized by the third drying cycle. All EM blocks displayed sponge like shape and texture at 

the end of the fourth drying cycle. 

4.4.2.2 Weight Loss and Decrease in Compressive Strength 

The percentage weight loss was monitored and reported at the completion of each cycle. 

Table 4.8 shows the cumulative percentage weight loss as well as the loss in compressive 

strength when the blocks were tested at the completion of the 4 cycles. The results are also 

plotted in Figures 4.25 and 4.27. 

Because of the constant binder content and w-cm ratio used in all the control and EPS hollow 

blocks and the same testing conditions, one may expect that the leaching reaction and 

products should be similar. Also because leaching depends on the porosity, and based on the 

results obtained from the absorption test, one may expect that the control blocks should have 

the least leaching and weight loss. However, Table 4.8 and Figure 4.25 show the contrary to 

this logic as the weight loss decreases with the increase of EPS content. This phenomenon 

can be explained based solely on the effect of EPS on cement paste. 

In addition to the effect of EPS particles as explained under the absorption section, the 

hydrophobic EPS particles act also as separate buffer zones that causes sluggish path of 

contaminants in the mortar. The more the content of the particles the more it is difficult for 

the leaching process to occur. Figure 4.25 illustrates the cumulative weight loss for all the 

hollow block batches over the 4 cycles. The observations drawn from this figure are:1-the 

weight loss, which is a function in the leached content, decreases with the increase of EPS 

content  in blocks, 2- the rate of weight loss with the progression of cycles decreases to a 

constant trend with the increase of the EPS content, 3-most of the weight loss in EM blocks 

occurs in the first and second cycles.  
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Table 4.8: Test results of cyclic ponding of test specimens in 5% sulphuric acid solution 

Batch 
Average 
Density 
(kg/m3) 

Cumulative Weight Loss (%) Loss in 
Compressive 

Strength 
(%) Cycle 1 Cycle 2 Cycle 3 Cycle 4 

CBP 2095.79 6.49 15.11 20.11 23.25 25.78 

CBW 2086.33 3.80 6.57 8.90 12.27 19.06 

CBF 2156.2 6.50 12.24 17.43 21.40 22.89 

EMBP10 1703.59 3.28 9.37 13.43 15.97 47.43 

EMBW10 1828.92 2.72 7.96 11.85 14.94 40.09 

EMBF10 1609.38 4.20 9.92 12.49 14.01 22.69 

EMBP15 1412.82 2.39 6.35 7.88 9.22 14.73 

EMBW15 1431.76 2.33 5.35 6.36 7.05 14.63 

EMBF15 1346.56 3.88 6.63 7.66 8.84 14.88 

EMBP20 1198.24 2.30 3.17 3.17 3.17 27.22 

EMBW20 1248.28 5.16 6.06 6.06 6.21 29.28 

EMBF20 1210.86 2.91 4.17 4.17 4.17 25.20 

EMBP26 956.61 0.28 0.28 0.28 0.28 17.56 

EMBW26 949.4 0.79 1.50 1.50 1.50 18.36 

EMBF26 957.51 2.73% 3.11% 3.11% 3.11% 15.42% 
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Figure 4.25: Average cumulative weight loss for the different types of EM hollow blocks 
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Figure 4.26: Average cumulative weight loss vs. density of EPS hollow blocks 

Figure 4.25 shows that the rate of weight loss in the control blocks only decreases slightly 

over the four cycles. This suggests that the shrinking core and the moving leaching shell 

deterioration pattern continue even after four cycles. A direct effect is that the porosity of the 

control blocks increases and the size of the block decreases. The control blocks had the 
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thinnest face shell of all the tested batches after four cycles.  On the other hand, the rate of 

weight loss over the four cycles of EPS hollow blocks decreases with the increase of the EPS 

content (decrease in density). EPS hollow blocks that belonged to batches EM20 and EM26 

ceased losing weight after the second and first cycles respectively. This means that the 

shrinking core and the moving leaching shell phenomenon cease to exist in EPS mortar 

blocks of lower densities. As a result, the porosity of the face shell would not be 

compromised with more acid leaching. Also, the declining rate and cessation of weight loss 

are indicative that EPS hollow blocks are more affected by sulphate salt attack more than 

sulphate acid attack. Sulphate salt attack would form a thick whitish-yellowish gypsum layer 

that formed armor to the abrasive solution. It was also noticed that after the ponding cycles 

the EPS particles would be exposed and appear on the blocks’ surface due to leaching. 

During the drying cycles the EPS particles on the face shell of the blocks would expand in a 

pop corn manner. The EPS hollow blocks would appear fluffier due to the expansion of the 

layer surrounding EPS particles over the surface shell. The amplified expansion of the 

deteriorated surface shell could be attributed to the lack of restraining action of the EPS 

particles to the expansion of the mortar. Slight friction would release some of the expanded 

powder taking off some EPS particles with it. Figure 4.26 shows a decreasing linear trend of 

the cumulative weight loss with the decrease of density of the control and EPS hollow blocks. 

Figure 4.27 does not show a specific relation between the final cumulative weight loss and 

compressive strength loss of the EM blocks. On the contrary, it shows a direct proportionality 

between the weight loss and the compressive strength loss of the control blocks. This could 

indicate that the weight loss due to leaching was the primary factor for compressive strength 

loss in the control blocks. However, comparing the strength loss and weight loss in the EM 

blocks would suggest that leaching was a secondary factor detrimental to strength. The 

primary aggression could be chemical reactions related to sulphate salt attack that caused loss 

in strength accompanied by shrinkage cracks and material expansion. This argument is 

supported by the declination and cessation of the rate of weight loss reported for EM blocks 

as well as expansive deterioration discussed earlier. The decrease in leaching might be due to 

the formation of the thick impervious gypsum layer that reduced the permeation of the acid 

water. Another deterioration mode indicative to sulphate salt attack was the presence of 
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surface shrinkage cracks over face shell of EM blocks. It was also noticed that most of the 

block specimens exhibited strength loss that ranged between 15 and 30%. 
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Figure 4.27: Average compressive strength loss for the different types of EPS hollow blocks 

Figure 4.28 shows that the strength loss is not affected by either the density of the block or 

the EPS content, except for a few outliers.  This could be explained by the fact that sulphate 

attack only targets the hydration products of the binder which is kept at a constant content of 

500 kg/m3. And, in mortars and EPS mortars, the compressive strength of the cement paste 

and its quality are the primary strength setters. Therefore, the deterioration faced by the 

control and different EM blocks may differ but the strength loss would be within a certain 

range that could be estimated through the chemistry of the sulphate reaction with the hydrated 

paste. Some specimens however would show higher strength loss such as specimens EMP10 

and EMW10 which could be attributed to the higher surface porosity incurred during casting. 

The role of reinforcement is more evident in the failure pattern which is discussed in the 

following section. The weight loss limits and the deterioration indicate that blocks made with 

EPS mortar of binder content 500 kg/m3, silica fume replacement of 9.8% and w/cm ratio of 

0.45 showed good resistant to strong acidic and sulphate environments. This was manifested 

in the volumetric intactness of the blocks, the preservation of almost 70 to 80% of the 
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compressive strength and the ductility of failure under compression. EM blocks exhibited 

similar durability to that of the control blocks but with less leaching.   
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Figure 4.28: Percent compressive strength loss vs. density of different types of EM hollow 

blocks 

4.4.2.3 Failure Pattern  

The failure pattern will be better discussed by the effect of EPS content first then the effect of 

the reinforcement type on the failure patter of the hollow blocks. Figure 4.29 shows the effect 

of the EPS content over the failure pattern of plain EM hollow blocks. The surface 

deterioration of the hollow blocks is evident. The failure of the control plain hollow blocks 

was sudden and brittle in an explosive manner. With the increase of the EPS content to 10 

and 15 kg/m3 the failure transformed from brittle to a more gradual failure, yet, failure was in 

the form of disintegration. The failure was in the form of splitting longitudinal cracks the 

shuttered the blocks into pieces of separate columns. The increase of EPS content to 20 and 

26 kg/m3 produce a ductile failure that is characterized by the shearing of the loaded surface 

of the face shell. 
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(a) Plain blocks (b) EMBP10  (c) EMBP15 

 

 

 

Figure 4.29: Failure pattern of plain control and EPS mortar after wet-dry acid cycles 

The effect of the wire mesh was evident over the failure pattern of the control block and all 

densities of the EM hollow blocks in Figure 4.30. The failure of the ferrocement control 

hollow blocks was gradual and in the form of longitudinal splitting brittle cracks. The split 

sections were kept intact by means of the wire cage and the block retained its volumetric 

shape. The first dosage of EPS tremendously improved the failure behavior of the 

ferrocement hollow blocks. Denser ferrocement EM hollow blocks, namely with EPS content 

to 10 and 15 kg/m3, was characterized by a brittle longitudinal crack. The number of 

longitudinal cracks increased to two for EPS content of 15 kg/m3 which is indicative to a 

more ductile failure. The longitudinal crack was surficial and the blocks retained their 

volumetric shape and no debris was noticed. The increase of the EPS dosage to 20 kg/m3 

produced ductile gradual failure that was characterized by an increase of the longitudinal 

cracks frequency. The loaded surface of the blocks also was characterized by the sliding of 

the surface into triangular chips. More ductile failure was revealed by the EMW26 hollow 

blocks. It was noticed, prior to failure, that buried wire and GFRP meshes were unharmed. 

The performance of the wire mesh was evident in the ductile failure of the EMW blocks. This 

was evident by the chipping and sliding of the face shell of the EMW blocks. Triangular 

spalls require more energy to form and suggest energy absorbing failure of the specimens 

(Vonk, 1993). The specimens were perfectly intact and failure was in a spongy manner.  

 

  
(d) EMBP20 (e) EMBP26 
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(a) CBW (b) EMBW10  (c) EMBW15 

 

 

 

Figure 4.30: Failure pattern of ferrocement control and EPS mortar after wet-dry acid cycles 

The glass fiber mesh produced more gradual failure pattern of the control block and all 

densities of the EM hollow blocks as illustrated in Figure 4.31. The gradual failure of the 

control blocks was characterized by the shear off of the fiber mesh and the block split into 

two pieces. The failure pattern of fiber glass hollow blocks with addition of EPS content was 

more improved than that of the ferrocement EM hollow blocks. This is attributed to the 

smaller mesh spacing of the fiber mesh. The more ductile failure was characterized by 

triangular cracks that indicate that compression failure was not the predominant cause and 

tensile failure also contributes to the ductility of the failure (Vonk, 1993). The softening of 

the loaded surface into slid triangular chips also proved the ductility of the failure especially 

in the EMF15 specimens. The cracks were almost invisible in specimens EMF20 and 

EMF26. In all cases the EM hollow blocks were intact volumetrically.  

   
(a) CBF (b) EMBF10 (c) EMBF15 

 

 

 

Figure 4.31: Failure pattern of fiber reinforced control and EPS mortar after wet-dry acid 

cycles 

  
(d) EMBW20 (e) EMBW26 

  
(d) EMBF20 (e) EMBF20 
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4.4.3 Soluble Chloride test results and discussion 

The discussion of the test results of the soluble chloride wetting-drying cycles will be divided 

on three section:1-the effect of soluble chloride cyclic ponding on plain control and EM 

blocks, 2-its effect on ferrocement control and EM hollow blocks and 3- its effect on GFRP 

reinforced control and EM hollow blocks. This division was chosen because this type of test 

adversely affects the cement mortar, wire mesh and GFRP mesh through physical reactions 

and two different chemical reactions respectively.  

4.4.3.1 Precipitation of salt and water retention and different absorption of salt water 

Table 4.9 and Figure 4.32 show the rate of precipitation of salts and pore clogging observed 

on the tested blocks. It is evident that batches that had high saline solution absorption (Figure 

4.33) have also high rate of salt precipitation. This is because absorption and precipitation are 

function in the porosity of the matrix. Block batches that showed a constant or decreasing rate 

of saline solution absorption indicate the presence of pore clogging by precipitated salts. On 

the other hand, blocks that showed increasing rate of saline water absorption may indicate the 

formation of micro-cracks due to salt crystallization and/or corrosion products. Saline 

solutions are more readily absorbed into the pores of the hollow block through the wetting 

cycles. On the other side, losing the absorbed water during the drying cycles was very slow. 

By the end of each drying cycle, some of the blocks would evidently have moisture content. 

In addition, the blocks never retrieved back their initial weight after the first wetting and 

drying cycle. During the drying cycles, surface water evaporated leaving behind salts in the 

concrete pores to precipitate and clog the surface pores which made water in the inner pores 

of concrete to remain trapped (water retention). With the progression of wetting and drying 

cycles, the mass difference between wet and dry specimens decreased and the specimens 

never returned back to their initial weight. Similar behavior was reported by R. P. Spragg et 

al, 2011.    
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Table 4.9: Cumulative rate of saline solution absorption and salt precipitation of the different 

types of control and EM blocks 

Batch Cumulative saline solution absorption 

(%) 

Cumulative salt precipitation (%) 

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 1 Cycle 2 Cycle 3 Cycle 4 

CBP 0.41 0.33 0.33 0.26 0.04 0.00 0.00 0.02 

CBW 1.22 1.22 1.13 1.06 0.74 0.63 0.54 0.67 

CBF 1.25 1.27 1.14 1.21 0.75 0.67 0.39 0.78 

EMBP10 3.23 3.15 3.20 3.07 2.03 2.09 2.06 2.22 

EMBW10 2.63 2.63 2.53 2.67 1.80 1.80 2.02 2.19 

EMBF10 2.59 2.59 2.57 2.64 1.84 1.84 2.07 2.19 

EMBP15 4.21 4.18 4.71 4.21 2.52 2.65 2.62 2.85 

EMBW15 3.71 3.71 3.71 3.83 2.78 2.78 3.06 3.18 

EMBF15 3.09 3.09 3.22 3.18 2.23 2.23 2.43 2.53 

EMBP20 2.94 2.91 3.02 3.06 1.38 1.49 1.38 1.57 

EMBW20 2.20 2.20 2.42 2.71 1.03 1.03 1.43 1.76 

EMBF20 2.70 2.70 2.93 3.00 1.61 1.61 1.94 2.08 

EMBP26 3.67 3.91 4.39 4.24 0.91 1.14 1.29 1.71 

EMBW26 4.46 4.84 4.88 5.12 1.79 2.30 2.12 2.58 

EMBF26 2.36 2.73 3.20 3.16 0.38 0.52 0.53 0.90 
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Figure 4.32: Cumulative salt precipitation in hollow blocks per cycles 
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Figure 4.33: Cumulative salt water absorption of hollow blocks per cycles 

4.4.3.2 Visual observations 

Salt crystallization and efflorescence phenomena occurred in all hollow block specimens. By 

the second drying cycles, it was observed that the upper surface of the hollow blocks would 

be saturated with salt crystals that are adsorbed to surface pores. The surface would be shiny 
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with pieces of crystals. Also, efflorescence in the form of whitish streaks of salts accumulated 

on the block’s surface and discoloration was noticed. The reason behind the crystallization of 

salts is that during the drying cycles of mortars subjected evaporation of surface water 

occurred. The moisture content near the mortars’ surface decreased rapidly and consequently 

the concentration of salts increased in a similar rate. In addition, the surface drying stimulated 

the migration of water from inside the pores towards the mortars’ surface. However, the 

crystallization of salts near the mortar’s surface caused the transport of water from inside to 

the surface to diminish. The salt crystallization process took place on the surface of mortars 

and the amount of precipitated salts increased continuously with time.  At the end of each 

drying cycle, thin-needle like crystals accumulated to form salt streaks were observed on the 

surface of all hollow block batches indicating the dense pore structure of the matrix and the 

crystallization of salts.  Similar salt crystallization phenomena were reported earlier by 

Koniorczyk, 2010 and Lubelli, and R. de Rooij, 2009. The maximum amount of surface 

crystals and efflorescence was noticed on the control ferrocement hollow block specimens.  

The EM hollow blocks suffered less discoloration and whitish streaks were reduced to 

whitish patches and spots except for blocks made with EM26 mortars which showed the 

maximum deterioration due to salt crystallization. This may be attributed to the porous 

surface finish of the EM26 hollow blocks that helped foster salt crystallization. This behavior 

was contradictory to the low absorption characteristics of these blocks, which confirmed the 

assumption that the less absorption values of the EM26 blocks was due to the large amounts 

of the hydrophobic EPS particles in the mix and the blocks’ surface. On the other hand, the 

extent of efflorescence in ferrocement control and EM blocks was the severest among the 

three types of blocks for all EPS contents. EM20 hollow blocks suffered the least of 

efflorescence deterioration.  Figure 4.34 illustrates some control and EM hollow blocks 

suffering efflorescence.  

   
(a) Control (CBF) (b) EMBW10 (c) EMBW26 

Figure 4.34: Hollow blocks suffered from efflorescence due to salt crystallization. 
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4.4.3.2 Plain hollow blocks strength deterioration 

Figure 4.35 and table 4.10 show the strength reduction occurred to control and EM hollow 

blocks subjected to cyclic chloride ponding. The reduction of strength in plain control and 

EM hollow block could be largely attributed to distresses and micro-cracks resulted from the 

salt crystallization phenomenon. It is obvious that the strength loss in plain control and EM 

hollow blocks was not affected by the EPS content. Higher ratios of EPS content in the 

blocks exhibit lower strength loss, although it is previously displayed that the water 

absorption of EM hollow blocks is higher almost 10 folds than that of the control blocks. This 

might be explained by low elastic modulus EPS particles have that would allow the 

expansion of mortars during salt crystallization without restraint. Also, EPS mortars have 

bigger pores between EPS and the matrix and have higher moisture transmission than 

conventional mortars which contributes in the responsive loss and gain of saline water 

without retaining much inside its pores for evaporation and expansion.  
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Figure 4.35: Average strength loss of all block batches after four wet-dry cycles of saturated 

NaCl ponding 
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Table 4.10: Strength loss incurred to the control and EM hollow blocks after wet-dry cycles 

of saturated NaCl ponding 

Batch Average Density (kg/m3) Strength loss (%) 

CBP 2071.00 26.67 

CBW 2075.51 3.71 

CBF 2089.03 23.97 

EMBP10 1704.04 16.69 

EMBW10 1896.99 59.64 

EMBF10 1808.63 90.15 

EMBP15 1359.63 17.95 

EMBW15 1456.10 11.43 

EMBF15 1373.15 80.54 

EMBP20 1211.76 21.57 

EMBW20 1227.99 15.07 

EMBF20 1231.60 25.74 

EMBP26 945.79 6.11 

EMBW26 960.22 15.05 

EMBF26 962.47 6.47 

4.4.3.3 Deterioration of ferrocement Control and EM Hollow Blocks  

The aggressive cyclic chloride ponding caused corrosion to all the ferrocement hollow 

blocks. The corrosion was noticed as early as the first cycle of testing. The early cycles were 

characterized by the appearance of leached rust products from the face pores of the blocks. 

This could be attributed to the large surface pores between the cement coated EPS particles of 

different sizes. Surface shrinkage and high absorption rate are also responsible for the early 

corrosion. It is worth noting that the same degree of corrosion was noticed in control and EM 

hollow blocks, which confirms that the key player of durability of EPS mortars is the quality 

of mortar matrix. Early signs of corrosion were noticed on all ferrocement specimens 
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regardless the content of EPS in the block. The expansive corrosion products developed 

underneath the reinforcement strands caused the mortar layer to crack. Also, EPS particles 

inflected low restraining effect on expansive corrosion products and crystallized salts. The 

corrosion products accumulated and deformed the ribs of the face shell as shown in Figure 

4.36. Corrosion cracks were also noticed and a combination between efflorescence and 

corrosion leach was observed as shown in Figure 4.36. The formation of oxidized leaks from 

the composite’s pores indicated that the concentration of soluble chloride ions reached the 

threshold value when the passive layer was pitted. The wet and dry cycles supplied the 

chemical reaction with soluble chloride, moisture and oxygen respectively which accelerated 

the corrosion of the reinforcement bars. The portlandite (Ca(OH)2) reacted with chloride ions 

(Cl-) and reduced the pH level in the pore solution of mortars to pH 10 or below which 

disturbed the equilibrium between portlandite, calcium silicate hydrate and the pore solution. 

The passive layer was pitted, and with further wetting cycles, chloride ions continued 

ingression towards steel, and caused the formation of corrosion products that were expansive 

and subsequent cracks of mortar steel cover occurred.  

 
(a) Leached rust stains (b) Crack formation due to Expansive rust products 

Figure 4.36: Deterioration of ferrocement hollow blocks due to wet-dry saline cycles 

Table 4.10 and Figure 4.35 show the decrease in strength of ferrocement control and EM 

hollow blocks is lower than that exhibited by the plain ones except for mixes EM10 and 

EM26. The less effect corrosion has on strength deterioration agrees well with the discussion 

that wet-dry cycles reduce corrosion rate and that EPS mortars made with silica fume have 

high electric resistance. This also confirms that the quality of mortars determine to a great 

extent the corrosion behavior of the composite. However, higher strength loss inflected the 

EMBW10 hollow blocks could be attributed to the poor compaction and the presence of 

segregation during mixing which introduced larger pores in this batch. Moreover, the high 

content of EPS aggregates in batches EMBW26 produced a very rough finish where 
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reinforcement strands could be seen exposed from the blocks’ faces. The inefficient steel 

cover aided the corrosion development and subsequent strength loss. The compressive 

strength of ferrocement hollow blocks made with the control, EM15 and EM20 batches was 

less affected than the plain ones made with similar batches. The confining effect of the 

reinforcement bars as well its load carrying capacity might have interfered to compensate for 

the strength lost by the cement matrix due to salt crystallization.  

4.4.3.4 Deterioration of Glass Fiber Mesh Reinforced Control and EM Hollow Blocks  

Although the GFRP mesh used in this research is alkaline resistant, the GFRP reinforced 

control and EM hollow blocks suffered the highest compressive strength loss as reported in 

Table 4.10 and Figure 4.35. The main deterioration factor was wetting and drying cycles in 

addition to the minor help provided by free chloride in altering the pore solution of the 

mortars and corroding the GFRP surface. Figure 4.35 demonstrate the sensitivity of GFRP 

EM hollow blocks to the quality of the mortar matrix and content of EPS. Comparing the 

effect obtained by the control fiber blocks and EMBF20 and 26 blocks shows that EPS may 

form a buffer zone of low permeability around the GFRP cage that decreases its leaching rate. 

It is fair to mention that the tremendously aggressive environment ailed to the failure of the 

glass fiber mesh which inflected sudden explosive failure of the mortar matrix. The wetting 

cycles induced a chemical reaction that caused hydroxylation of the glass fiber surface and 

resulted in pitting and embrittlement that deteriorated the tensile properties of glass fibers. 

The glass fiber degradation occurred due to the formation of a gel-coat of H2SiO3 (Silicic 

acid) that was formed due to the hydration and dissolution of glass fibers when subjected to 

moisture inside the pore solution of concrete. Karbhari et al, 2002 presented a more detailed 

of the deterioration of GFRP bars in high alkaline environments. The failure pattern will be 

explained sufficiently in the next section. The strength loss in specimens EMFB10 and 

EMFB 15 may be attributed to the increased permeability of these two batches more than the 

rest of the batches. The increased permeability would allow the more ingression of water and 

chloride to the glass fiber mesh and accelerate its deterioration. Also, the strength loss of 

glass fiber reinforced EM hollow blocks decreases significantly with the increase in EPS 

content. Although the GFRP hollow blocks did not exhibit any signs of severe 

deterioration—but for the salt crystallization—the deterioration of glass fibers in marine 

environment (cyclic wetting and drying of NaCl solution) is a complex kind of deterioration 
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that needs further research. The mechanism by which chloride ions and hydroxyl ions 

interacts with GFRP and mortar interface and the produced products is a recent field of 

research with very scarce information and analysis.   

4.4.3.5 Failure Pattern of Plain control and EM hollow blocks 

The increase in EPS dosage not only helped EM plain hollow blocks retain more strength 

than the control ones, but also increased the failure ductility as shown in Figure 4.37. The 

failure of the control blocks was a brittle one that was characterized by splitting longitudinal 

cracks. EMP10 specimens had a more ductile failure that was characterized by narrower 

longitudinal cracks and spall of the face shell. However, splitting cracks were also noticed on 

EMP10 specimens’ failure. The blocks belonging to batches EMP15 and EMP20 exhibited 

more toughness that was manifested by a more ductile failure. Triangular spalls and chipped 

surface dislocations indicated a failure that absorbed lot of energy to occur. EMP26 blocks 

had almost no visible longitudinal cracks and failed by surface shell spall. A very significant 

pattern of behavior occurred at the start of the experiment. The blocks would release energy 

in a pop sound that causes the loading machine to kink and stop then reloads till failure. This 

behavior might be an indication of the distresses caused by crystallized salts clogging the 

pores of the blocks.  

   
(a) CBP (b) EMBP10 (c) EMBP15 

 

 

 

Figure 4.37: Failure pattern developed in plain hollow blocks after wet-dry saline cycles 

4.4.3.6 Failure Pattern Ferrocement control and EM hollow blocks 

The corrosion and salt crystallization was evident on all the ferrocement hollow block 

specimens as shown in Figure 4.38. The failure of ferrocement blocks was characterized by 

slippage in all specimens. This was noted when the loading machine kinked and stopped 

  
(d) EMBP20 (e) EMBP26 
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loading at the beginning of the test. A pop sound was heard and the machine resumed loading 

till failure. Some specimens suffered more than one slippage incident during testing. Tensile 

failure occurred in batches CBW and EMBW10 which was characterized by brittle explosive 

failure. The cracks were tensile cracks (diagonal cracks) and wire mesh failed by either 

rupture or severe deformation. Specimens belonging to batches EMBW15 and 20 displayed a 

shift in toughness. The ductile failure was characterized by triangular dislocated spalls of the 

face shells. However, deep tensile cracks could still be noticed. Specimens EMBW26 showed 

failure by compressibility, no cracks were evident. It is worth noting that specimens 

EMBW20 and 26 showed decrease in their height in a compressed barreling failure. This 

behavior could be attributed to the internal micro-cracks developed by the salt crystallization 

and expansive corrosion products that were not restrained by the EPS particles. 

   
(a) CBW (b) EMBW10 (c) EMBW15 

 

 

 

 

Figure 4.38: Failure pattern developed in ferrocement hollow blocks after wet-dry saline 

cycles 

4.4.3.7 Failure Pattern GFRP control and EM hollow blocks 

The GFRP blocks are the most interesting group of specimens. The degradation of GFRP 

cage initiated failure in the blocks. The failure of hollow block belonging to groups CBF, 

EMBF10 and EMBF15 was a brittle explosive failure. CBF blocks first suffered slippage of 

fiber then the composite block failed suddenly. Figure 4.39 shows shuttered pieces of mortar 

falling loosely off the GFRP cage in an indication of loss of bond. On the other hand, this 

partially composite action did not exist in blocks belonging to batches EMBF10 and 

EMBF15, rather, these blocks failed explosively due to the rupture of the GFRP cage. Deep 

tensile cracks existed and were localized around the rupture location of the fibers. On the 

  
(d) EMBW20 (e) EMBW26 
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other hand, blocks belonging to batches EMBF20 and EMBF26 displayed a more gradual and 

ductile failure that was characterized by triangular slid spalls occurring on the face shell. 

However, tensile cracks would be still seen at the bottom section of these blocks (shear 

cracks).  

   
(a) CBF (b) EMBF10 (c) EMBF15 

 

 

 

Figure 4.39: Failure pattern developed in GFRP hollow blocks after wet-dry saline cycles 

4.5 Thermal Test Results and Analysis 

This section analyses the thermal conductivity results obtained experimentally from the hot 

wire method. The effect of EPS dosage on the k-value is illustrated and the variation of k-

value with EPS content and temperature is highlighted. 

4.5.1 The EPS content effect on the k-value 

The k-values of the control mix and four EPS mortar mixes measured at 50 and 70 degrees 

Celsius are presented in Table 4.11.  Figure 4.40 presents the variation of the k-values with 

the density at 50 and 70 degrees Celsius. The results obtained show a general trend of the 

decrease of the k-value with the increase of the EPS content. This decrease could be 

explained simply by analyzing the contribution of each of the constituents of the composite to 

the k-value by using a rule of mixtures. The overall k-value could be mathematically 

calculated by proportioning the k-values of each of the composite constituents according to 

its contribution in the overall composite weight or as a percentage and applying the sum rule 

to the proportioned k-values (Marshall, 1972). The thermal conductivity of the control mix is 

1.8 W/m. K at 50 degrees Celsius, while the thermal conductivity of EPS beads as reported 

by Incropera and DeWitt, 1996 is 0.04 W/m. K at 27 degrees Celsius. Applying a simple rule 

  
(d) EMBF20 (e) EMBF26 
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of mixture, EPS decreases the density of mortars as compared to the control mix by 24, 30, 

39, and 55 per cent for mixes EM10, EM15, EM20 and EM26 respectively. This means that 

these percentages of density of solid quartzite sand, which has a very high thermal 

conductivity of 8.6 W/m. K (Khan, 2002) was replaced by cellular solids of negligible 

thermal conductivity.  

Table 4.11: The k-value of the control and four EPS mortar mixes measured at 50 and 70 

degrees Celsius 

Mix 
Density (kg per cu m) 

 

Average Thermal Conductivity (k-value) 

Temperature in degree Celsius 

50 70 

Control 2200 1.80 2.15 

EM10 1680 1.53 1.47 

EM15 1550 0.99 0.94 

EM20 1350 0.56 0.29 

EM26 980 0.16 0.29 
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Figure 4.40: The K-value measured at 50 and 70 degrees Celsius of all mixes 
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4.5.2 Temperature and moisture effect on the k-value of the control mix 

It was previously shown that the absorption of EPS mortar changes insignificantly with the 

increase of the EPS dosage. However, because the specimens were not conditioned at 100-

110 degrees Celsius as recommended by ASTM C642, their pore structure inevitably was 

susceptible to moisture content either remnant of the curing process or from the prevailing 

atmospheric conditions. The significance of moisture in specimens affected the results of the 

k-values of the control bricks. This phenomenon could be explained by the fact that the 

adsorbed moisture to the pores of the materials consumed some of the heat generated by the 

electric current passing through the hot wire. As a result, the effective heat dedicated to 

increase the temperature of the solids was more than otherwise have been in case of a bone-

dry specimen, and the rise of temperature at a fixed distance from the wire was lower than 

that expected in bone-dry specimens (dos Santos, 2003). In experimental practice, the k-value 

was thus apparently higher than expected.   

4.5.3 Temperature and moisture effect on the k-value of EPS mortars 

Although it has been shown in the previous section that the k-value of the specimens were 

supposed to be increasing as the measuring temperature increases from 50 to 70 degrees 

Celsius, the k-value of the EPS mortar decreased on this temperature range. The k-values of 

the EPS mortar mixes presented in Table 4.11 decrease with the increase of the tested 

temperature. At 70 degrees Celsius, the surface EPS combusted, leaving air in place, thus 

reduced the k-value of the brick.  The thermal conductivity of air at 27 degrees Celsius is 

0.0263 W/m. K (Incropera and DeWitt, 1996) which is lower than that of EPS measured at 

the same temperature. Furthermore, the vast variation between the k-value measured for the 

EM20 mix at 50 and 70 degrees Celsius might be due to the heat release by the thermal 

decomposition of the surface EPS beads. The average heat resulting from the thermal 

degradation of EPS is 800 J/g (Kannan et al, 2007). To help quantify this amount of heat; 

4.186 J are needed to raise the temperature of 1 g of water by 1 degree Celsius. This heat 

release would increase the ambient temperature of the test specimen as well as the 

temperature of the specimen itself.  Kligys, et al, 2008 reported that as the amount of EPS in 

cement matrix increases, the heat release increases during the combustion of the beads. The 

more the EPS concentration produces more heat evolving from their combustion. This 
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explains the vast variation between the k-value at 50 and 70 degrees observed for EM26 

specimens. In reverse to what happened in the presence of moisture, the added heat would 

mean that less energy was needed by the platinum wire to raise the temperature of the tested 

specimen than if otherwise the heat of degradation did not exist. This explains why 

apparently; the k-value is lower with the increase of the temperature at which it is measured. 

The combination of specimen conditioning and instrumentation limitations and heat of 

degradation had their toll over the k-value measured for the EM20 and EM26 mixes. Because 

the volume around the platinum wires became tremendously porous and heated with the heat 

of degradation, the k-value at 70 degrees Celsius is measured as double that of the one 

measured at 50 degrees Celsius. As a result, it is better to ignore the k-value obtained at 70 

degrees Celsius for the EM20 and EM26 specimens. After the test termination at 70 degrees 

Celsius, it was noticed that the bricks had surface pores that took the shape of EPS particles 

which was evidence that EPS particles shrunk and evaporated at a temperature around 70 

degrees Celsius. The pores resulting from the softened EPS surface particles are shown in 

Figure 4.41. There are several explanations to the premature thermal degradation of EPS 

particles. Although the thermal degradation of EPS is independent of its shape and polymer 

density, it is dependent on the additives used during its manufacturing, the number of weak 

bonds, the method of synthesis, etc (Kannan et al, 2007). Therefore, it is recommended to do 

some pyrolysis tests on samples of EPS to map the kinetics of its thermal decomposition. It is 

safe to note that the combustion of EPS particles embedded in the surface of EPS mortars 

occurred around 70 degrees Celsius. Kligys, et al, 2008 reported that combusted EPS crush 

left cavities in the aerated cement matrix.  

 

Figure 4.41: Pores resulting from the softening and shrinking of surface EPS aggregates of 

prisms made from mix EM20 
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Chapter 5 

Numerical Model for Determining Thermal Characteristics 

5.1 Introduction 

The instrumentation required to measure the thermal conductivity of hollow block units is 

very limited in Egypt. Only one environmental chamber operating by means of guarded hot 

box method is available in Housing & Building National Research Center and it measures the 

U-value, which is the overall thermal conductivity of walls. The only obvious solution was to 

either construct a guarded hot box, which requires strict quality control and expertise or opt 

for numerical modeling of heat transfer behavior of hollow blocks.  

5.2 Mathematical formulation 

The heat transfer problem comprises the conduction and radiation equations in the solid 

phase and cavity wall respectively and the flow equations in the fluid phase (air). The 

problem is simplified by implementing the Boussinesq assumption, which means that viscous 

dissipation in fluid is neglected and the motion of air is solely due to variation in its density 

due to differential temperature of the walls of the cavity induced by the two isothermal 

surfaces. In other words, air density is temperature dependant.  The governing equations are 

presented below (Ait-Taleb et al, 2008, Al-Hazmy 2006 and Sun and Fang 2009). 

For the solid walls, the conduction equation applies: 
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For air-filled enclosure, the following equations apply for convection: 

The continuity equation 
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The momentum in the x-direction: 
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The momentum in the y-direction: 
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The momentum in the z-direction: 
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The energy equation: 
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Rayleigh’s number equation: 

Pr2

3


 THgRa 

          (7) 

The Boussinesq assumption: 

 )(1 cc TT            (8) 

For enclosure walls, the following equations apply for radiation: 

The dimensionless radiative Qr heat flux to the radiative heat qr (W/m2) by:  

4
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The radiative heat qr,k(rk) is a function in the radiosity Jk(rk) and incident radiative heat flux 

Ek(rk) on surface.  The heat flux exchanged between two surfaces: the finite area dSk located 

at position rk and surface k, is defined by the following equation: 

)()()(, kkkrrkkr rErJq          (10) 

The radiosity equation: 
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The incident radiative heat flux equation: 
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5.2.1 Post-processing equations 

The following equations are used to evaluate the equivalent thermal conductivity obtained 

numerically: 
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5.3 Boundary conditions 

The main building block of the thermal model represents half a block and is exhibited in 

Figure 5.1. The height, width and length are equivalent and equal to 0.2 m. the diameter and 

height of the cylinder are 0.125 m and 0.2 m respectively. In the x-direction, the right-side rib 

has a width of 0.025 m and the left-side one has a width of 0.05 m. In the y-direction, the two 

upper and lower withes have an equivalent width of 0.0375 m. 
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All the elements are wall elements. The outer and inner surfaces of the wall are isothermal 

surfaces and are kept at constant temperatures, Th=50 and Tc=25. The surface exterior to the 

wall at x=0 is maintained at a constant temperature of 50 degrees Celsius (323 K) while the 

interior’s surface is kept at a constant temperature of 25 degrees Celsius (298 K). The left and 

right sides, bottom and top of the block are adiabatic surfaces at y=0, y= 0.2, z=0 and z=0.2 

respectively. Adiabatic surfaces mean that the surfaces are insulated and do not allow the 

gain or loss of heat.  

 

Figure 5.1: A 3-D representation of half a block was used to model the heat transfer problem 

of the EPS hollow blocks 

5.3.1 Operating conditions  

The 3-D model drawn on GAMBIT had the fluid and solid phases defined so when read by 

FLUENT, the conduction shells were automatically defined. The convection and radiation 

phases were defined manually to simulate the heat transfer problem accurately. 

 The motion of air in the cavity is assumed to exhibit laminar flow in a steady state. The 

Bousinesq assumption was implemented in the operating conditions. The gravitational 

acceleration was activated and was given a value in the z-direction only to be -9.81 m/s2. The 
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operating density of air is assumed 1.225 kg/m3. The non-slip condition was activated to 

ensure that the velocities at the walls of the cavity were zero.  

The radiation model selected for this problem was the surface-to-surface (S2S) model. It is 

particularly suitable because it is used for the calculation of radiative transfer in enclosures 

without the presence of a participating medium, (a medium that participates in the radiation 

heat by emitting, absorbing and reflecting heat like smog in a factory flue for example). It 

assumes that all surfaces of the enclosure are gray and diffuse. However, it is time and space 

costly in the computation of the view factor especially that the model is 3-D. To speed up this 

process, the amount of radiating surfaces is decreased in a process called surface clustering. 

The view factor and surface cluster parameters were hemi cube and surface smoothing to 

increase the accuracy of computation. 

5.4 Simulation 

Five main models were generated in FLUENT; each was run with 4 different scenarios, 

namely: 1-conduction, 2-conduction and radiation, 3-conduction and convection and 4-

conduction, convection and radiation. The material properties of the fluid phase are the same 

for all five models and are defined as air of Boussinesq density and thermal expansion β of 

0.003356 (K-1). The material properties of solid phase are defined as that of the five mixes 

studied in this thesis, namely: the control, EM10, EM15, EM20, and EM26. Only the density 

and the coefficient of thermal conductivity were altered for each model as was determined 

experimentally. The specific heat and emissivity were kept constant at 840 (J/kg .K) and 0.94 

respectively. Although it was previously mentioned that EPS improves significantly those 

properties, the difficulty of experimentally obtaining them invoked this assumption.  

The conduction-convection-radiation heat transfer scenario was obtained by enabling the 

gravitational acceleration, Boussinesq model with a specified thermal expansion of air and 

the radiation model S2S. The conduction-convection heat transfer scenario was achieved by 

disabling the radiation models in general. The conduction heat transfer scenario was achieved 

by disabling both the gravitational acceleration (making air stagnant) and the radiation model.   

The heat transfer problem was initialized by setting all zones at relative average temperature 

of 37.5 degrees Celsius (310.5 K) and setting air motionless by zeroing all the velocities and 
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pressure. For solution controls, the discretization options selected for pressure, momentum 

and energy were PRESTO!, QUICK and QUICK respectively. The pressure-velocity 

coupling was done by the SIMPLE algorithm.  

5.4.1 Grid dependence simulation 

The mesh selected for the modeled module was structured mesh. A breakdown of the 3-D 

model into a basic geometry was implemented to be able to perform structured meshing 

(figure 5.2). The basic model shown in Figure 5.2 was used to generate five models of 

different mesh refinement in GAMBIT. The meshing scheme was quadrilateral of the type 

map and brick elements were produced of minimum skewness. The mesh was examined and 

the produced report indicates it was of good quality.  Figure 5.3 shows a green histogram 

which is accumulated at the left side as a sign of the good quality of the mesh. The volume of 

the block was created by sweeping the meshed faces about the z-axis, which in turn was also 

meshed a priori. 

 

Figure 5.2: The basic geometry for the generation of structured mesh. 
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Figure 5.3: 3-D module of the hollow block. The green histogram on the left indicate a good 

quality mesh. 

The accuracy of the results is associated with fine meshing. However, the fine the mesh could 

get is also a function in its cost in terms of solution conversion time and computer processing 

space. Five mesh sizes were selected for grid dependency testing as shown in table 5.1 and 

Figure 5.4.  The difference between the heat transfer rates was diminishing starting from case 

3 till case 5, which was the most expensive in terms of computation time and space. 

Therefore, case 3 was selected to represent the module of the numerical problem as it 

produces the most accurate results with the least expensive cost. 

Table 5.1: Cases tested for mesh sensitivity estimation 

Case No. of nodes Total heat transfer (W) 

1 42,861 7,15 

2 95,576 7,12 

3 178,591 7,11 

4 676,936 7,10 

5 948,651 7,10 
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Figure 5.4: The plot shows the mesh sensitivity towards the number of meshed elements. 

5.4.2 Code Validation 

The geometry the hollow blocks discussed in this research is not abundantly discussed in 

literature. Therefore, the model’s validation was done on the selection of a representative 

module, the boundary conditions and the mesh density. The 3-D validation model represents 

half a commercially available concrete hollow block with the cavity asymmetric to the 

conductive shell. Figure 5.5 represents a schematic of the validation model, which bore the 

same boundary conditions, mesh density, and physical parameters of the constituting 

materials as that of the control mix. Two types of validation are discussed in this section, 

namely, validating against numerical and experimental results.    

The Nusselt’s number for the conduction-convection mode was obtained numerically and 

compared to values in literature for Ra =106 and Pr=0.7 for the given grid size. Nusselt’s 

number is a parameter that defines the dimensionless temperature gradient at a surface 

(Incropera and DeWitt 1996). Its importance lies in the fact that it provides a measure of the 

convection heat transfer at a surface (Incropera and DeWitt 1996).  The following equations 

were used in numerically computing Nusselt’s number (De Vahl Davis 1983, Balaji and 

Venkateshan 1993, and Barakos and Mitsoulis 1994) 


1

0

),( dzzxQNu x          (16) 
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
1

0

dxNuNu x           (17) 

The mean Nusselt’s number is 8.3, which agrees well with the mean Nusselt’s number 

estimated by the benchmark solution with just 3.6 % error (De Vahl Davis 1983).  

The second method of is against experimental results. The numerically obtained total 

equivalent thermal conductivity yielding from running the conduction-convection-radiation 

scenario was 1.32 W/mK. The equivalent K-value of commercial concrete hollow blocks, 

same dimensions and material is 5.23 and 9.8 per cent error with experimental results cited 

by Baig, 2008 and  VanGreen 1986 respectively. The error limited are acceptable given that 

uncertainty—experimental error—lies in the vicinity of 6.13% to 6.92% (Al-Hadhrami and 

Ahmad 2009). 

 

Figure 5.5: A schematic of the 3-D model representing a module of the commercially 

available concrete hollow blocks. 

5.5 Results and discussions 

The equivalent thermal conductivities of the different types of EPS hollow blocks are 

presented in Table 5.2 and Figure 5.6. The effect of air movement in the enclosure is evident 

from the difference between the keq obtained from the conduction and that obtained from 

convection-conduction scenarios. Also, the effect of radiation is evident from the difference 

in the Keq-values obtained from the all-modes and the conduction-convection scenarios. The 
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lowest Keq –values are that obtained from the conduction mode, while the highest is that of 

the prism for high EPS mortar densities and that obtained from all-heat-transfer modes 

scenario for lower densities.  

The difference between the total equivalent thermal conductivity (Ktot) obtained from the all-

heat-transfer-modes scenario and the K-value of prisms decreased significantly with the 

decreased with the increase in the density of the mixes.  The presence of cavities in blocks 

made with mixes EM20 and EM26 may prove to be futile and degenerative as the Ktot values 

obtained from the conduction mode were higher than that obtained from the solid prism. 

However, more light will be shed on the effect each mode of heat transfer separately in the 

coming sections. 

Table 5.2: Results of Keq obtained from the three different run-scenarios as compared with 

the experimental K-value of the solid bricks 

Batch 
Density 

(kg/m3) 

Experimental 

Bricks’ thermal 

conductivity 

(Ks) 

Numerical analysis results of different modes 

of heat transfer scenarios 

all modes of 

heat transfer 

Conduction 

and convection 

only 

Conduction 

only 

Control 2200 1.80 1.43 1.14 0.97 

EM10 1678 1.53 1.27 0.99 0.83 

EM15 1549 1.00 0.94 0.71 0.54 

EM20 1347 0.57 0.63 0.46 0.32 

EM26 982 0.17 0.25 0.19 0.10 
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Figure 5.6:  Keq of different hollow blocks obtained from the numerical simulation scenarios 

5.5.1 The conduction mode 

In this mode the air is assumed stagnant as well as the solid phase is assumed not to reflect, 

absorb or emit any incident radiation rays. The thermal resistance of the hollow block module 

is merely the summation of a series and parallel R-values of fluid and solid phases analogical 

to an electrical cell resistance. The Kcond obtained is lower than that of the prisms’ for all 

densities because the thermal conductivity of stagnant air is almost ten folds that of EM26, 

and air constitutes 30% of the volume of the module block.  

When compared to the other two heat transfer scenarios, the Kcond is very low; however, it is 

the dominating mode of heat transfer as shown in Figure 5.6. The conduction mode decreases 

linearly with the decrease in the solid’s thermal conductivity. A decreasing K-value means an 

increasing thermal resistance. Also, the gap between the contributions of the equivalent K-

value of the three phases diminishes with the decrease in the solid’s K-value. The lighter EPS 

composites EM20 has the less gap between Kcond , Kconv , and Krad implying that the 

conduction, radiation and convection phase are sharing power in contributing to the total 

equivalent thermal conductivity. Mix EM26 is characterized by the balanced contribution of 

the three equivalent K-values. 
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The conduction K-value (Kcond) attributes to 32 to 58% of the total equivalent K-value (Ktot) 

obtained from the three modes of heat transfer. This suggests that the controlling heat transfer 

mode in this research is conduction. The per cent contribution of Kcond increases with the 

decrease in the prisms’ thermal conductivity. The largest contribution of Kcond  is done by 

mixes EM20 and EM26 at 49.6% and 57.9% respectively. This suggests the balancing of the 

three modes of heat transfer in lighter EPS hollow blocks.  
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Figure 5.7: the contribution of each heat transfer modes’ Keq in total equivalent thermal 

conductivity (Ktot) 

5.5.2 The effect of convection  

The effect of convection in the heat transfer in hollow blocks is significant and cannot be 

practically ignored. The addition of the convection mode increased the Keq value as compared 

to that obtained from the conductive mode only for all the EPS mortar mixes as shown in 

Figure 5.6. Figure 5.7 shows the rate of heat transfer contributed by the convection mode 

(Qconv). The contribution of Qconv ranges between 12.16 to 36.14% for blocks made from the 

control and EM26 mixes respectively.  
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Figure 5.8: Convective and radiative heat transfer rates decrease with the decrease in the 

solids K-value 

The movement of air upwards at the heated side and downwards at the cooled side induced 

air circulation in a cellular motion.  This is evident from the isotherms gradient shown in 

Figure 5.8. The isotherm gradient falls sharply near the hot and cold surface of the cavity 

indicating the presence of a cellular motion due to buoyancy (Al-Hazmy, 2006). Figure 5.8 

shows the temperature gradient of a horizontal line passing through the midpoint of the 

isothermal surfaces located at the mid height of the hollow block (in ratios: z=0.5, x=0.5, 

0<y<1). A comparison between hollow blocks of the control and EM20 mixes is drawn in 

this figure. The cavity is starts at y=0.0375 m and ends at y=0.01625 m, near these points, the 

temperature gradient steeply drops till a constant value, where the air is stagnant in the 

middle of the cavity away from its walls. The effect of the k-value of solids is manifested in 

the steepness of the temperature gradient in the solid phase and near the cavity walls in the 

fluid phase. The EM20 blocks exhibit steep gradient in temperature as compared to the 

control blocks. Also, the cavity wall temperature is 319.9 K at the hot wall and 301.015 at the 

cold wall as compared to 321.4 K and 299.6 K for the control blocks’ counterparts. The steep 

gradient in temperature showed by EM20 blocks could be explained by the hypothesis that 

EPS mortar has lower thermal mass than conventional mortars. It is relevant to add that EPS 

is expected to decrease the specific heat capacity of the EPS mortar, however, for the lack of 
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experimental data, their specific gravities are assumed to be equivalent. Although, adjusting 

the specific gravity would yield steeper results for the EM20 blocks in the conduction zones. 

The higher temperature exhibited at cavity’s the cold wall could be explained by the steep 

gradient existing in the conduction solid phase. The higher velocity of air circulations assist 

in the transmission of heat through air, and vice versa. Figures 5.9 through 5.15 display the 

velocity magnitude vectors, vortices (air spinning) in the y- and z-directions for the control 

and EM20 hollow block respectively. The values obtained by the EM20 blocks are lower 

than that obtained by the control ones. The difference in cavity wall temperature between the 

EM20 and the control hollow blocks explains the less Qconv exhibited by the former than the 

latter. Similar centerline heat distribution in a single cavity hollow block module were 

obtained and discussed in Baig, 2008. 
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Figure 5.9: Temperature gradient at z=0.5, x=0.5, 0<y<1, through the control and EM20 

hollow blocks. 
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Figure 5.10: Velocity vectors magnitude obtained from the control hollow blocks in the 

direction of temperature gradient. 

 

Figure 5.11: Vorticity obtained from the control hollow blocks in the direction of temperature 

gradient. 
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Figure 5.12: Vorticity obtained from the control hollow blocks in the z- direction. 

 

Figure 5.13: Velocity vectors magnitude obtained from the EM20 hollow blocks in the 

direction of temperature gradient are less than those exhibited by the control ones. 
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Figure 5.14: Vorticity obtained from the EM20 hollow blocks in the direction of temperature 

gradient is less than those developed by the control ones. 

 

Figure 5.15: Vorticity obtained from the EM20 hollow blocks in the z-direction is less than 

those developed by the control ones. 

Also, there is a significant change in temperature between the top and the bottom of the 

hollow blocks in general in along the height of the cavity as shown in Figure 15. This 



www.manaraa.com

148 

 

temperature gradient is produced by the buoyancy forces between the rising flow at the hot 

isotherms and the descending flow at the cold ones. Hot air accumulates at the top cells while 

cold air accumulates at lower cells (Al-Hazmy, 2006). 

 

Figure 5.16: Temperature gradient along the height of the hollow blocks induced by buoyant 

forced circulating air. 

It is difficult, therefore, to ignore of the effect of convection. The contribution of convection 

increases as the K-value of the solid phase decreases could be explained by the supposition 

that the weakness of the conduction mode and contribution let way to the amplification of the 

effect of convection. This amplification has a negative effect on the EM26 hollow blocks 

where the Keq produced from the conduction-convection mode (Kcond-conv) is more than the K-

value of the solid phase. Therefore these blocks are better off either solid or filled with 

convection suppressing core like polystyrene or wool. 

5.5.3 The effect of radiation 

The rate or radiation heat transfer Qrad is slightly more than the effect of Qconv, however, this 

effect rapidly decreases with the decrease in the K-value of solids (Ks) as illustrated in Figure 

5.7. When radiation mode is introduced to the conduction-convection mode, the Ktot rapidly 

increases and the gap between Ks and Ktot is bridged significantly as shown in figure. Hollow 

blocks of mixes EM20 and EM26 are the most severely affected by considering radiation that 
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their Ktot is more than their Ks. The significant effect of radiation is acknowledged and cannot 

be disregarded for reason of engineering practicality (Sun and Fung, 2009).  

The effect of radiation is dominant in enclosures (Balaji and Venkateshan, 1994; Baig, 2008; 

Sun and Fung, 2009). Radiation causes a drop in the convective component that is amplified 

in the presence of high emissivity (e>0.9) (Balaji and Venkateshan, 1994). The drop occurs 

because radiation exerts an equilibrating effect on the temperature of the walls of enclosures, 

thus reducing the temperature gradient that initiates air circulation (Balaji and Venkateshan, 

1994).  

The drop in convection makes way to the interaction between the conduction and radiation 

modes (Balaji and Venkateshan, 1994). This is seen in Figures 5.6 and 5.7 where the 

contribution of conduction diminishes with the decrease in the k-value of the solid phase. 

Figure 5.16 shows the drop in the cavity differential temperature due to the introduction of 

the radiation mode as compared to the conduction-convection mode.  
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Figure 5.17: the effect of radiation mode on equilibrating the cavity wall temperature. 

The factors that mainly affected the contribution of radiation are the emissivity and the cavity 

width (Baig, 2008;  Sun and Fang 2009). Setting the emissivity of the EPS and conventional 

mortars equivalent might need further study and review. EPS is a highly insulating material 

that contains gas filled pores; its addition to concrete produces a composite that possesses 
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significantly improved low emissivity. EPS mortar of dry density equals to 458 kg/m3 has a 

conduction-radiation equivalent K-value (Kcond-rad) of 0.137 W/mK which indicates a 

significantly low emissivity and therefore, low contribution in the radiation heat transfer 

mode (Bonacina et al, 2003 and Jelle et al, 2009).   

The cavity width plays a major rule in contributing to the increase in Qrad(Sun and Fang, 

2009). Similar results of elevated contribution of Krad were reported by Sun and Fang, 2009 

and attributed to the cavity width and the presence of one cavity. Splitting the cavity through 

partitions into smaller cavities or lining the cavity walls with insulation would reduce the 

radiation effect (Sun and Fang, 2009, and Al-Hazmy, 2006). 
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Chapter 6 

Summary and Conclusion  

6.1 Summary 

This research attested the viability of using EPS aggregates in casting hollow blocks and solid 

bricks as a viable thermally efficient building component. EPS particles were used as partial 

replacement of the fine aggregates. Four dosages of EPS were used mainly, 10, 15, 20, and 

26 kg/m3 partial substitution of the sand content in the mortar mixes. Experimental 

investigation was conducted to study the effect of the percentage of EPS on the properties of 

the EPS mortar. The different mixes of the EPS mortar were used to cast hollow blocks of 

dimensions 400x200x200 mm with two cylindrical holes of diameter 125mm and solid brick 

of dimensions 235x115x65 mm. The ferrocement concept was used to reinforce the hollow 

blocks with two types of reinforcing mesh mainly welded wire mesh and glass fiber mesh. 

Experimental tests were conducted on the developed hollow block and solid bricks to 

investigate the effect of the EPS content on the mechanical properties, durability, and thermal 

characteristics of the developed building units.  The results showed that EPS mortar of 

density range 988 and 1748 kg/m3 produced mechanical properties of EPS hollow blocks and 

solid bricks that comply with ASTM C 129 and the Egyptian standards. Moreover, the long-

term cyclic exposure to abrasive environments revealed the resilience of the proposed 

building units. In addition, the experimental and numerical thermal analysis revealed good 

reduction trend in the thermal conductivity of the bricks and hollow blocks. 

6.2 Conclusion 

Based on the experimental results of the present investigation and within the limitations of 

the conducted experimental program, the following conclusion could be drawn: 

 The use of EPS is effective in reducing the dry density of mortar mixes. The reduction in 

density is somewhat proportional to the increase in the content of EPS per mix.  

 It is recommended to use a polymer admixture such as latex or polyvinyl acetate to 

improve bond between the mortar matrix and EPS aggregates in denser EPS mortar mixes 

such as EM10 and EM15. 
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 The compressive strength reduced from 14.2 to 3.5 MPa when the weight of EPS/m3 of the 

mix was increased from 10 to 26 kg/m3. 

 Specimens incorporating EPS showed improved failure pattern as demonstrated by a 

gradual failure pattern until ultimate failure. All EPS mortar specimens displayed gradual 

failure retained their integrity after failure, unlike the control mortar mix which suffered 

from sudden and brittle failure. 

 The static modulus of elasticity of EPS mortar mixes is reduced with the increase of the 

dosage of EPS. The static modulus of elasticity ranged between 8.2 and 1.2 GPa for mixes 

EM10 and EM26 respectively 

 The compressive strength of the EPS mortar hollow blocks and solid bricks was highly 

affected by the content of EPS aggregates. The net compressive strength of the EPS 

mortar hollow blocks ranged between 6.9 and 2.4 MPa with a corresponding weight range 

between 19.5 and 10.6 kg. The control hollow blocks had compressive strength of 9.5 

MPa and weighed 23.5 kg 

 The strength of the EPS mortar solid bricks ranged between 5.9 and 2.2 MPa with a 

corresponding weight ranged between 2.9 and 1.7 kg. The control solid bricks had 

compressive strength of 8.6 MPa and weighed 3.8 kg. 

 The reinforcement inside EPS mortar hollow blocks did not transform their compressive 

strength from the non-load bearing category to the load bearing category. 

 The wire mesh and GFRP reinforcement positively affected the characteristics of the 

hollow EPS mortar blocks by generating more gradual failure and specimens retained 

their integrity.  

 The compressive strength of ferrocement dense EPS hollow blocks (EM10) was almost 

equivalent to that of the plain but significantly higher than that of the GFRP mesh 

reinforced EPS hollow blocks.  

 A good utilization of the wire mesh reinforcement was recorded by lighter EPS mortar 

hollow blocks (EM15 1nd EM20) where the compressive strength was higher than that 

obtained by their plain and GFRP reinforced counterparts. 
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 The dosage of the EPS aggregates exerted unsubstantial effect on absorption that rendered 

a near constant average absorption value of 4 % recorded by almost all the EPS mortar 

hollow blocks.  

 The wet-dry cyclic exposure to 5% of sulfuric acid dilute unveiled that the strength loss 

was not affected by either the density of the block or the EPS content, except for a few 

outliers. The strength loss for all the hollow blocks ranged between 15 and 30 percent.  

 The wet-dry cyclic exposure to saturated saline solution had adversely affected the plain 

and reinforced EPS hollow blocks in different physical and chemical reactions. All 

hollow blocks suffered from weight retention after drying cycles which resulted from 

prolonged drying and salt precipitation. 

  Plain hollow blocks suffer from efflorescence and micro-cracking due to salt 

crystallization. The compressive strength loss ranged between 6.11 % and 26.67%.  

 The addition of EPS decreased the strength deterioration and weight loss of the plain 

hollow blocks when subjected to 5% sulphuric acid wet/dry cycles. 

 The addition of EPS decreased the strength deterioration of the plain hollow blocks when 

subjected to saline wet/dry cycles. 

 All ferrocement hollow blocks are the least affected by saline cycles except for the 

densest and the lightest batches of hollow blocks.  

  The GFRP mesh reinforced hollow block suffers the most from saline wet-dry cycles due 

to the GFRP fiber deterioration by the cyclic exposure to moisture. The GFRP mesh 

failure set the ultimate strength and triggered the failure of denser EPS hollow blocks.  

 Incorporating EPS improves the thermal insulation properties of the mix. The coefficient 

of thermal conductivity (K-value) is decreased with the increase of EPS content in the 

mix.  

 The lowest thermal conductivity was reported for the EM20 and EM26 bricks which 

recorded 0.56 W/m K and 0.16 W/m K respectively, compared with 1.8 W/m K for the 

control mix.  

 The lowest total equivalent thermal conductivity—considering the three heat transfer 

modes: conduction, convection and radiation—was recorded for the lighter EPS mortar 

hollow blocks at range of 0.63W/m K and 0.25 W/m K. 
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 The of radiation in the numerical model showed that lighter EPS mortar hollow blocks 

(from mixes EM20 and EM26) had more equivalent thermal conductivity than if they had 

solid geometry. 

 Denser EPS hollow blocks (mixes EM10 and EM15) are recommended for non-load 

bearing external wall applications. 

 Lighter EPS hollow blocks (from mixes EM20 and EM26) are recommended for non-load 

bearing external wall applications in very hot climates because of their higher thermal 

insulation, especially in high rise and office buildings where dead load and energy 

consumption reductions are appreciated. 

 Lighter EPS hollow blocks, especially reinforced ones, are recommended for non-load 

bearing external wall applications where dynamic load exists, however, the construction 

method needs to be designed with care--flexible mortar joints and shear reinforcement 

should be designed accordingly. 

 Reinforced EPS hollow blocks, especially the ferrocement ones, are recommended for 

applications where dynamic load--e.g. earthquakes--is considered because of the block’s 

capacity to develop narrower cracks and tougher response. 

 EPS hollow blocks would be suitable as salvage walls in foundation lining where salts 

and/or abrasive soils--sulphur presence from ground water or sewage leak--is a fret.  

6.3 Recommendations for future work 

  The rheology of the EPS mixes should be studied and adjusted according to different 

factors such as: 1-volume of the mix, 2-volume of the mixer, 3-bouyancy forces exerted 

by the mortar, 4-surface tension between the EPS aggregate and the mortar, 5-mixing 

method and time and 6-casting method and time. The consistency of the mix could be 

enhanced by adding polyvinyl acetate emulsion, latex or any other bond enhancing 

admixture.  

 Study the effect of higher percentages of silica fume and fly ash would increase the 

durability of EPS mortars. The strength of the EPS mortar mix could be improved by using 

beaded spheres of much smaller size. 

 Study the effect of EPS aggregate size, gradation and quality on the compressive strength 

of EPS mortar mixes experimentally and numerically.  
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 Assessing the thermal characteristics of EPS mortars is just at its initial stages, hence 

parameters are needed to be experimentally assessed such as specific heat capacity, 

emissivity, moisture transmissivity and micro porosity and macro    porosity.  

 EPS mortar should be subjected to pyrolysis test-fire degradation-to estimate the 

temperature at which it starts degrading and the volume of toxic fumes released during 

thermal degradation.   

6.4 Recommendations for applications 

 The compressive strength of the EPS hollow blocks would rather be put in context in 

future research through testing prisms and real size walls. The interaction between the 

stronger mortar joints confining the more ductile ferrocement EPS mortar hollow blocks 

is worth assessing and studying.  

 The construction method of EPS hollow block walls in terms of type and design 

of mortar joint and the presence of shear reinforcement and expansion joints 

should be explored to maintain the structures’ low thermal conductivity--reduce 

thermal bridges--and toughness. 

 Finite element modeling was proved a utile tool in this research. Since nearly all the 

mechanical and thermal properties of EPS mortar were explored in this research, FEM of 

real size walls should be embarked on as the next step in research to explore compressive, 

dynamic and impact strength of structures made from the proposed building units. 

 Researching the transient thermal transmissivity of the EPS mortar hollow blocks wall 

would certainly mark their advantages in terms of thermal mass and the factors affecting 

the thermal performance of walls subjected to a simulation of real environmental 

conditions.  

 Walls made from plain and reinforced EPS hollow blocks—filled and cored—should be 

tested against impact load. As one of the main attraction of EPS mortars is its gradual 

failure and higher toughness.  

 EPS cement blocks should be tested and rated against fire exposure with the presence and 

absence of fire retardant inside their cavities. Counteractive measures and special fire 

retarding plaster should be also considered and tested to overcome any toxic emissions.  
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